Finite Sample Performance of Small Versus Large Scale Dynamic Factor Models
53 Pages Posted: 12 Feb 2012
There are 2 versions of this paper
Finite Sample Performance of Small Versus Large Scale Dynamic Factor Models
Finite Sample Performance of Small Versus Large Scale Dynamic Factor Models
Date Written: February 10, 2012
Abstract
We examine the finite-sample performance of small versus large scale dynamic factor models. Our Monte Carlo analysis reveals that small scale factor models out-perform large scale models in factor estimation and forecasting for high levels of cross-correlation across the idiosyncratic errors of series belonging to the same category, for oversampled categories and, especially, for high persistence in either the common factor series or the idiosyncratic errors. Using a panel of 147 US economic indicators, which are classified into 13 economic categories, we show that a small scale dynamic factor model that uses one representative indicator of each category yields satisfactory or even better forecasting results than a large scale dynamic factor model that uses all the economic indicators.
Keywords: business cycles, output growth, time series
JEL Classification: E32, C22, E27
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
By Eduardo Ley and Mark F.j. Steel
-
By Eduardo Ley and Mark F.j. Steel
-
Are Any Growth Theories Robust?
By Steven N. Durlauf, Andros Kourtellos, ...
-
Jointness of Growth Determinants
By Gernot Doppelhofer and Melvyn Weeks
-
Determinants of Economic Growth: Will Data Tell?
By Antonio Ciccone and Marek Jarocinski
-
Determinants of Economic Growth: Will Data Tell?
By Antonio Ciccone and Marek Jarocinski
-
Growth Empirics Under Model Uncertainty: Is Africa Different?
-
By Theo S. Eicher, Chris Papageorgiou, ...
-
Jointness in Bayesian Variable Selection with Applications to Growth Regression
By Eduardo Ley and Mark F.j. Steel