Asymptotics for LS, GLS, and Feasible GLS Statistics in an AR(1) Model with Conditional Heteroskedasticity
56 Pages Posted: 17 Feb 2012
There are 2 versions of this paper
Asymptotics for LS, GLS, and Feasible GLS Statistics in an AR(1) Model with Conditional Heteroskedasticity
Asymptotics for LS, GLS, and Feasible GLS Statistics in an AR(1) Model with Conditional Heteroskedasticity
Date Written: February 15, 2012
Abstract
This paper considers a first-order autoregressive model with conditionally heteroskedastic innovations. The asymptotic distributions of least squares (LS), infeasible generalized least squares (GLS), and feasible GLS estimators and t statistics are determined. The GLS procedures allow for misspecification of the form of the conditional heteroskedasticity and, hence, are referred to as quasi-GLS procedures. The asymptotic results are established for drifting sequences of the autoregressive parameter and the distribution of the time series of innovations. In particular, we consider the full range of cases in which the autoregressive parameter rho_{n} satisfies (i) n(1 - rho_{n}) approaches infinity and (ii) n(1 - rho_{n}) approaches h_{1} in [0,infinity) as n approaches infinity, where n is the sample size. Results of this type are needed to establish the uniform asymptotic properties of the LS and quasi-GLS statistics.
Keywords: Asymptotic distribution, Autoregression, Conditional heteroskedasticity, Generalized least squares, Least squares
JEL Classification: C22
Suggested Citation: Suggested Citation