Item Selection by an Extended Latent Class Model: An Application to Nursing Homes Evaluation
33 Pages Posted: 18 Apr 2012 Last revised: 27 Apr 2012
Date Written: April 16, 2012
Abstract
The evaluation of nursing homes and the assessment of the quality of the health care provided to their patients are usually based on the administration of questionnaires made of a large number of polytomous items. In applications involving data collected by questionnaires of this type, the Latent Class (LC) model represents a useful tool for classifying subjects in homogenous groups. In this paper, we propose an algorithm for item selection, which is based on the LC model. The proposed algorithm is aimed at finding the smallest subset of items which provides an amount of information close to that of the initial set. The method sequentially eliminates the items that do not significantly change the classification of the subjects in the sample with respect to the classification based on the full set of items. The LC model, and then the item selection algorithm, may be also used with missing responses that are dealt with assuming a form of latent ignorability. The potentialities of the proposed approach are illustrated through an application to a nursing home dataset collected within the ULISSE project, which concerns the quality-of-life of elderly patients hosted in Italian nursing homes. The dataset presents several issues, such as missing responses and a very large number of items included in the questionnaire.
Keywords: expectation-maximization algorithm, polytomous items, quality-of-life, ULISSE project
JEL Classification: C13, C33, I11
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Nonparametric Instrumental Regression
By Serge Darolles, Yanqin Fan, ...
-
Estimation of Semiparametric Models When the Criterion Function is Not Smooth
By Xiaohong Chen, Oliver B. Linton, ...
-
Estimation of Nonparametric Conditional Moment Models with Possibly Nonsmooth Moments
By Xiaohong Chen and Demian Pouzo
-
Instrumental Regression in Partially Linear Models
By Jean-pierre Florens, Jan Johannes, ...
-
Efficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals
By Xiaohong Chen and Demian Pouzo
-
Estimation of Nonparametric Conditional Moment Models with Possibly Nonsmooth Generalized Residuals
By Xiaohong Chen and Demian Pouzo
-
Estimation of Nonparametric Conditional Moment Models with Possibly Nonsmooth Generalized Residuals
By Xiaohong Chen and Demian Pouzo
-
Efficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals
By Xiaohong Chen and Demian Pouzo
-
On Rate Optimality for Ill-Posed Inverse Problems in Econometrics
By Xiaohong Chen and Markus Reiss
-
Tikhonov Regularization for Nonparametric Instrumental Variable Estimators
By Patrick Gagliardini and O. Scaillet