Sharp Bounds and Testability of a Roy Model of STEM Major Choices
63 Pages Posted: 21 Apr 2012 Last revised: 4 Apr 2019
There are 2 versions of this paper
Sharp Bounds and Testability of a Roy Model of STEM Major Choices
Date Written: November 2, 2018
Abstract
We analyze the empirical content of the Roy model, stripped down to its essential features, namely sector specific unobserved heterogeneity and self-selection on the basis of potential outcomes. We characterize sharp bounds on the joint distribution of potential outcomes and testable implications of the Roy self-selection model under an instrumental constraint on the joint distribution of potential outcomes we call stochastically monotone instrumental variable (SMIV). We show that testing the Roy model selection is equivalent to testing stochastic monotonicity of observed outcomes relative to the instrument. We apply our sharp bounds to the derivation of a measure of departure from Roy self-selection to identify values of observable characteristics that induce the most costly misallocation of talent and sector and are therefore prime targets for intervention. Special emphasis is put on the case of binary outcomes, which has received little attention in the literature to date. For richer sets of outcomes, we emphasize the distinction between pointwise sharp bounds and functional sharp bounds, and its importance, when constructing sharp bounds on functional features, such as inequality measures. We analyze a Roy model of college major choice in Canada and Germany within this framework, and we take a new look at the under-representation of women in STEM.
Keywords: Roy model, sectorial choice, partial identification, stochastic monotonicity, intersection bounds, functional sharp bounds, inequality, optimal transport, college major, gender profiling, STEM
JEL Classification: C31, C34, C35, I21, J24
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Inference in Incomplete Models
By Alfred Galichon and Marc Henry
-
Asymptotic Properties for a Class of Partially Identified Models
-
Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection
-
Applications of Subsampling, Hybrid, and Size-Correction Methods
-
Set Identification in Models with Multiple Equilibria
By Alfred Galichon and Marc Henry
-
The Limit of Finite-Sample Size and a Problem With Subsampling
-
Bayesian and Frequentist Inference in Partially Identified Models
-
A Test of Non-Identifying Restrictions and Confidence Regions for Partially Identified Parameters
By Alfred Galichon and Marc Henry