Conceptualizing Robustness in Risk Management
23 Pages Posted: 24 May 2012 Last revised: 1 Oct 2015
Date Written: May 24, 2012
Abstract
Two main areas of application of mathematics in finance are the valuation of financial instruments and the quantification of risk inherent in portfolios consisting of financial instruments. The mathematical models used in both areas were criticized in the aftermath of the financial crisis, due to the significant amount of model risk that was realized. Consequently, regulators and other stakeholders start to require that the internal models used by financial institutions are robust. In this paper, we answer the question how the robustness requirements can be consistently incorporated into the quantitative risk management process of a financial institution, with a special focus on insurance. We advocate the Wasserstein metric as the canonical metric for approximations in robust risk management. Writing risk measures as statistical functionals, we relate them to this approximation approach. This allows us to use results from robust statistics concerning continuity and differentiability of such functionals. Finally, we combine the mathematical ingredients of the risk management process in the risk management space and illustrate our approach via a practical application.
Keywords: risk management, robustness, Wasserstein Metric, risk measures
JEL Classification: C18, G32
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Indirect Robust Estimation of the Short-Term Interest Rate Process
By Veronika Czellar, George Andrew Karolyi, ...
-
Robustness and Sensitivity Analysis of Risk Measurement Procedures
By Rama Cont, Romain Deguest, ...
-
Generalized Quantiles as Risk Measures
By Fabio Bellini, Bernhard Klar, ...