# Cospectral Graphs and Regular Orthogonal Matrices of Level 2

CentER Discussion Paper Series No. 2012-042

16 Pages Posted: 8 Jun 2012

See all articles by Herbert Hamers

## Herbert Hamers

Tilburg University - Center for Economic Research (CentER); Tilburg University - Department of Econometrics & Operations Research

Tilburg University - Center for Economic Research (CentER)

Date Written: May 24, 2012

### Abstract

For a graph Γ with adjacency matrix A, we consider a switching operation that takes Γ into a graph Γ′ with adjacency matrix A′, defined by A′ = QAQ, where Q is a regular orthogonal matrix of level 2 (that is, QQ = I, Q1 = 1, 2Q is integral, and Q is not a permutation matrix). If such an operation exists, and Γ is nonisomorphic with Γ′, then we say that Γ′ is semi-isomorphic with Γ. Semiisomorphic graphs are ℜ-cospectral, which means that they are cospectral and so are their complements. Wang and Xu [‘On the asymptotic behavior of graphs determined by their generalized spectra’, Discrete Math. 310 (2010)] expect that almost all pairs of ℜ-cospectral graphs are semi-isomorphic.

Regular orthogonal matrices of level 2 have been classified. By use of this classification we work out the requirements for this switching operation to work in case Q has one nontrivial indecomposable block of size 4, 6, 7 or 8. Size 4 corresponds to Godsil-McKay switching. The other cases provide new methods for constructions of ℜ-cospectral graphs. For graphs with eight vertices all these constructions are carried out. As a result we find that, out of the 1166 graphs on eight vertices which are ℜ-cospectral to another graph, only 44 are not semi-isomorphic to another graph.

Keywords: cospectral graphs, orthogonal matrices, switching

JEL Classification: C0

Suggested Citation

Hamers, Herbert and Abiad, Aida, Cospectral Graphs and Regular Orthogonal Matrices of Level 2 (May 24, 2012). CentER Discussion Paper Series No. 2012-042. Available at SSRN: https://ssrn.com/abstract=2065864 or http://dx.doi.org/10.2139/ssrn.2065864