Download this Paper Open PDF in Browser

Generating a Close-to-Reality Synthetic Population of Ghana

16 Pages Posted: 18 Jun 2012  

Tyler J. Frazier

Technical University of Berlin

Andreas Alfons

Katholieke Universiteit Leuven - Faculty of Business and Economics (FBE)

Date Written: 2012

Abstract

The purpose of this research is to generate a close-to-reality synthetic human population for use in a geosimulation of urban dynamics. Two commonly accepted approaches to generating synthetic human populations are Iterative Proportional Fitting (IPF) and Resampling with Replacement. While these methods are effective at reproducing one instance of the probability model describing the survey, it is an instance with extremely small variability amongst subgroups and is very unlikely to be the real population. IPF and Resampling with Replacement also rely on pure replication of units from the underlying sample which can increase unrealistic model behavior. In this work we present a sequential logic for estimating variables using multinomial logistic regressions and the conditional probabilities amongst each variable in order to generate combinations which were not represented in the original survey but are likely to occur in the real population. We also present a model based approach to imputing missing observation responses and apply the methodology to the Ghana Living Standard Survey 5 (GLSS5) in order to generate a comprehensive synthetic population for the Republic of Ghana, including such household and person variables as household size, tribal affiliation, educational attainment and annual income, amongst others. The R language and environment for statistical computing was used as well as the packages VIM and simPopulation in developing and executing the code. Contingency coefficients, cumulative distributions, mosaic plots, and box plots are presented for evaluation in order to demonstrate the effectiveness of the new method in its application to Ghana.

Suggested Citation

Frazier, Tyler J. and Alfons, Andreas, Generating a Close-to-Reality Synthetic Population of Ghana (2012). Available at SSRN: https://ssrn.com/abstract=2086345 or http://dx.doi.org/10.2139/ssrn.2086345

Tyler Frazier (Contact Author)

Technical University of Berlin ( email )

Stra├če des 17
Juni 135
Berlin, 10623
Germany

Andreas Alfons

Katholieke Universiteit Leuven - Faculty of Business and Economics (FBE) ( email )

Naamsestraat 69
Leuven, B-3000
Belgium

Paper statistics

Downloads
39
Abstract Views
266