Portfolio Choice in Markets with Contagion
33 Pages Posted: 5 Oct 2012 Last revised: 27 Mar 2015
Date Written: March 26, 2015
Abstract
We consider the problem of optimal investment and consumption in a class of multidimensional jump-diffusion models in which asset prices are subject to mutually exciting jump processes. This captures a type of contagion where each downward jump in an asset's price results in increased likelihood of further jumps, both in that asset and in the other assets. We solve in closed-form the dynamic consumption-investment problem of a log-utility investor in such a contagion model, prove a theorem verifying its optimality and discuss features of the solution, including flight-to-quality. The exponential and power utility investors are also considered: in these cases, the optimal strategy can be characterized as a distortion of the strategy of a corresponding non-contagion investor.
Keywords: Merton problem, jumps, Hawkes process, mutual excitation, contagion, flight-to-quality
JEL Classification: G11, G01
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
By Luc Bauwens and J. V. K. Rombouts
-
Time-Varying Arrival Rates of Informed and Uninformed Trades
By David Easley, Liuren Wu, ...
-
A Model for the Federal Funds Rate Target
By James D. Hamilton and Oscar Jorda
-
A Model for the Federal Funds Rate Target
By James D. Hamilton and Oscar Jorda
-
The Logarithmic Acd Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks
By Luc Bauwens and Pierre Giot
-
By Luc Bauwens and David Veredas
-
Identifying Bull and Bear Markets in Stock Returns
By John M. Maheu and Thomas H. Mccurdy
