Modular Pricing of Options

42 Pages Posted: 15 Aug 2000

Abstract

In this paper, we introduce a unified pricing framework for options by applying the Fourier analysis where stochastic volatility, stochastic interest rate and random jump are independently specified. The modeling of volatility and interest rate falls into four different alternatives: constant, mean-reverting Ornstein-Uhlenbeck process, mean-reverting square root process and mean-reverting double square root process while random jumps can be specified as pure jumps, lognormal jumps and Pareto jumps. This framework called Modular Pricing of Options includes most of the existing options pricing formulas as special cases, for example, the Black-Scholes (1973), the Merton (1976), the Heston (1993), the Bakshi-Cao-Chen (1997) as well as Schoebel-Zhu's (1999) formulas. Modular Pricing of Options is not only of theoretical importance but also provides practitioners a powerful and convenient tool to implement complex and flexible option pricing model to meet the challenge in steadily changing financial markets.

JEL Classification: G13

Suggested Citation

Zhu, Jianwei, Modular Pricing of Options. Available at SSRN: https://ssrn.com/abstract=224969 or http://dx.doi.org/10.2139/ssrn.224969

Jianwei Zhu (Contact Author)

University of Tuebingen ( email )

Mohlstrasse 36
D - 72074 Tuebingen
Germany

Register to save articles to
your library

Register

Paper statistics

Downloads
870
Abstract Views
2,922
rank
26,904
PlumX Metrics