A Big Data Approach to Analyzing Market Volatility
28 Pages Posted: 7 Jun 2013
Date Written: June 5, 2013
Abstract
Understanding the microstructure of the financial market requires the processing of a vast amount of data related to individual trades, and sometimes even multiple levels of quotes. Analyzing such a large volume of data requires tremendous computing power that is not easily available to financial academics and regulators. Fortunately, public funded High Performance Computing (HPC) power is widely available at the National Laboratories in the US. In this paper we demonstrate that the HPC resource and the techniques for data-intensive sciences can be used to greatly accelerate the computation of an early warning indicator called Volume-synchronized Probability of Informed trading (VPIN). The test data used in this study contains five and a half year's worth of trading data for about 100 most liquid futures contracts, includes about 3 billion trades, and takes 140GB as text files. By using (1) a more efficient file format for storing the trading records, (2) more effective data structures and algorithms, and (3) parallelizing the computations, we are able to explore 16,000 different ways of computing VPIN in less than 20 hours on a 32-core IBM DataPlex machine. Our test demonstrates that a modest computer is sufficient to monitor a vast number of trading activities in real-time -- an ability that could be valuable to regulators.
Our test results also confirm that VPIN is a strong predictor of liquidity-induced volatility. With appropriate parameter choices, the false positive rates are about 7% averaged over all the futures contracts in the test data set. More specifically, when VPIN values rise above a threshold (CDF > 0.99), the volatility in the subsequent time windows is higher than the average in 93% of the cases.
Keywords: high-performance computing, market microstructure, probability of informed trading, VPIN, liquidity, flow toxicity, volume imbalance, flash crash
JEL Classification: C02, D52, D53, G14, G23
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Flow Toxicity and Liquidity in a High Frequency World
By David Easley, Marcos Lopez De Prado, ...
-
By David Easley, Marcos Lopez De Prado, ...
-
By David Easley, Marcos Lopez De Prado, ...
-
The Volume Clock: Insights into the High Frequency Paradigm
By David Easley, Marcos Lopez De Prado, ...
-
An Analysis of Extreme Price Shocks and Illiquidity Among Systematic Trend Followers
By Bernard Lee, Shih-fen Cheng, ...
-
By David Easley, Marcos Lopez De Prado, ...
-
Liquidity Measurement Problems in Fast, Competitive Markets: Expensive and Cheap Solutions
-
Discerning Information from Trade Data
By David Easley, Marcos Lopez De Prado, ...