Propensity Score Matching Methods for Non-Experimental Causal Studies
34 Pages Posted: 13 Jul 2000 Last revised: 31 Aug 2022
There are 2 versions of this paper
Propensity Score Matching Methods for Non-Experimental Causal Studies
Propensity Score Matching Methods for Non-Experimental Causal Studies
Date Written: December 1998
Abstract
This paper considers causal inference and sample selection bias in non-experimental settings in which: (i) few units in the non-experimental comparison group are comparable to the treatment units, and (ii) selecting a subset of comparison units similar to the treatment units is difficult because units must be compared across a high-dimensional set of pre-treatment characteristics. We propose the use of propensity score matching methods and implement them using data from the NSW experiment. Following Lalonde (1986), we pair the experimental treated units with non-experimental comparison units from the CPS and PSID and compare the estimates of the treatment effect obtained using our methods to the benchmark results from the experiment. We show that the methods succeed in focusing attention on the small subset of the comparison units comparable to the treated units and, hence, in alleviating the bias due to systematic differences between the treated and comparison units.
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Characterizing Selection Bias Using Experimental Data
By James J. Heckman, Hidehiko Ichimura, ...
-
Propensity Score Matching Methods for Non-Experimental Causal Studies
By Rajeev H. Dehejia and Sadek Wahba
-
Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs
By Orley Ashenfelter and David Card
-
Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs
By Rajeev H. Dehejia and Sadek Wahba
-
Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review
-
The Role of the Propensity Score in Estimating Dose-Response Functions
-
Does Matching Overcome Lalonde's Critique of Nonexperimental Estimators?
By Jeffrey A. Smith and Petra Todd
-
Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score
By Keisuke Hirano, Guido W. Imbens, ...