A Frequency-Domain Alternative to Long-Horizon Regressions with Application to Return Predictability

21 Pages Posted: 26 Jul 2013  

Natalia Sizova

Rice University

Date Written: July 24, 2013

Abstract

This paper aims at improved accuracy in testing for long-run predictability in noisy series, such as stock market returns. Long-horizon regressions have previously been the dominant approach in this area. We suggest an alternative method that yields more accurate results. We find evidence of predictability in S&P 500 returns even when the con fidence intervals are constructed using model-free methods based on sub-sampling.

Keywords: Predictive regressions, semiparametric methods, local-to-unity, long memory, long-horizon regressions, subsampling

JEL Classification: C12, C14, G12, G14, E47

Suggested Citation

Sizova, Natalia, A Frequency-Domain Alternative to Long-Horizon Regressions with Application to Return Predictability (July 24, 2013). Available at SSRN: https://ssrn.com/abstract=2297934 or http://dx.doi.org/10.2139/ssrn.2297934

Natalia Sizova (Contact Author)

Rice University ( email )

6100 South Main Street
Houston, TX 77005-1892
United States

Paper statistics

Downloads
43
Abstract Views
254