Using Adaptive Sparse Grids to Solve High-Dimensional Dynamic Models
37 Pages Posted: 4 Nov 2013 Last revised: 25 May 2017
Date Written: May 22, 2017
Abstract
We present a flexible and scalable method for computing global solutions of high-dimensional stochastic dynamic models. Within a time iteration or value function iteration setup, we interpolate functions using an adaptive sparse grid algorithm. With increasing dimensions, sparse grids grow much more slowly than standard tensor product grids. Moreover, adaptivity adds a second layer of sparsity, as grid points are added only where they are most needed, for instance in regions with steep gradients or at non-differentiabilities. To further speed up the solution process, our implementation is fully hybrid parallel, combining distributed and shared memory parallelization paradigms, and thus permits an efficient use of high-performance computing architectures. To demonstrate the broad applicability of our method, we solve two very different types of dynamic models: first, high-dimensional international real business cycle models with capital adjustment costs and irreversible investment; second, multiproduct menu-cost models with temporary sales and economies of scope in price setting.
Keywords: Adaptive Sparse Grids, High-Performance Computing, International Real Business Cycles, Menu Costs, Occasionally Binding Constraints
JEL Classification: C63, E30, F44
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Spurious Welfare Reversals in International Business Cycle Models
By Sunghyun Henry Kim and Jinill Kim
-
Solving Dynamic General Equilibrium Models Using a Second-Order Approximation to the Policy Function
-
Solving Dynamic General Equilibrium Models Using a Second-Order Approximation to the Policy Function
-
Solving Dynamic General Equilibrium Models Using a Second-Order Approximation to the Policy Function
-
Inspecting the Mechanism: An Analytical Approach to the Stochastic Growth Model
-
Comparing Solution Methods for Dynamic Equilibrium Economies
-
Comparing Solution Methods for Dynamic Equilibrium Economies
-
Solving Nonlinear Stochastic Growth Models: a Comparison of Alternative Solution Methods
By John B. Taylor and Harald Uhlig
-
Solving Large Scale Rational Expectations Models
By Jess Gaspar and Kenneth L. Judd