Bayesian Dynamic Pricing Policies: Learning and Earning Under a Binary Prior Distribution
Management Science, Vol. 58, No. 3, March 2012, pp. 570-586
34 Pages Posted: 3 Feb 2014 Last revised: 7 Oct 2018
Date Written: May 22, 2011
Abstract
Motivated by applications in financial services, we consider a seller who offers prices sequentially to a stream of potential customers, observing either success or failure in each sales attempt. The parameters of the underlying demand model are initially unknown, so each price decision involves a trade-off between learning and earning. Attention is restricted to the simplest kind of model uncertainty, where one of two demand models is known to apply, and we focus initially on performance of the myopic Bayesian policy (MBP), variants of which are commonly used in practice. Because learning is passive under the MBP (that is, learning only takes place as a by-product of actions that have a different purpose), it can lead to incomplete learning and poor profit performance. However, under one additional assumption, a constrained variant of the myopic policy is shown to have the following strong theoretical virtue: the expected performance gap relative to a clairvoyant who knows the underlying demand model is bounded by a constant as the number of sales attempts becomes large.
Keywords: Revenue management, pricing, estimation, Bayesian learning, exploration-exploitation
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Testing the Validity of a Demand Model: An Operations Perspective
By Omar Besbes, Robert Phillips, ...
-
Monotone Approximation of Decision Problems
By Naveed Chehrazi and Thomas A. Weber
-
On the (Surprising) Sufficiency of Linear Models for Dynamic Pricing with Demand Learning
By Omar Besbes and Assaf Zeevi