A New Approach to Assessing Model Risk in High Dimensions

28 Pages Posted: 10 Feb 2014 Last revised: 3 Apr 2015

See all articles by Carole Bernard

Carole Bernard

Grenoble Ecole de Management; Vrije Universiteit Brussel (VUB)

Steven Vanduffel

Vrije Universiteit Brussel (VUB)

Date Written: April 2, 2015

Abstract

A central problem for regulators and risk managers concerns the risk assessment of an aggregate portfolio defined as the sum of d individual dependent risks Xi. This problem is mainly a numerical issue once the joint distribution of (X1, X2, . . . , Xd) is fully specified. Unfortunately, while the marginal distributions of the risks Xi are often known, their interaction (dependence) is usually either unknown or only partially known, implying that any risk assessment of the portfolio is subject to model uncertainty.

Previous academic research has focused on the maximum and minimum possible values of a given risk measure of the portfolio when only the marginal distributions are known. This approach leads to wide bounds, as all information on the dependence is ignored. In this paper, we integrate, in a natural way, available information on the multivariate dependence. We make use of the Rearrangement Algorithm (RA) of Embrechts, Puccetti, and R¨uschendorf (2013) to provide bounds for the risk measure at hand. We observe that incorporating the information of a well-fitted multivariate model may, or may not, lead to much tighter bounds, a feature that also depends on the risk measure used. In particular, the risk of underestimating the Value-at-Risk at a very high confidence level (as used in Basel II) is typically significant, even if one knows the multivariate distribution almost completely.

Our results make it possible to determine which risk measures can benefit from adding dependence information (i.e., leading to narrower bounds when used to assess portfolio risk) and, hence, to identify those situations for which it would be meaningful to develop accurate multivariate models.

Keywords: Model Risk, VaR, TVaR, variance, tail dependence, tail correlation

JEL Classification: C60, G28

Suggested Citation

Bernard, Carole and Vanduffel, Steven, A New Approach to Assessing Model Risk in High Dimensions (April 2, 2015). Journal of Banking and Finance, Forthcoming, Available at SSRN: https://ssrn.com/abstract=2393054 or http://dx.doi.org/10.2139/ssrn.2393054

Carole Bernard

Grenoble Ecole de Management ( email )

12, rue Pierre Sémard
Grenoble Cedex, 38003
France

Vrije Universiteit Brussel (VUB) ( email )

Pleinlaan 2
http://www.vub.ac.be/
Brussels, 1050
Belgium

Steven Vanduffel (Contact Author)

Vrije Universiteit Brussel (VUB) ( email )

Pleinlaan 2
Brussels, Brabant 1050
Belgium

HOME PAGE: http://www.stevenvanduffel.com

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
541
Abstract Views
4,372
Rank
86,186
PlumX Metrics