Optimal Insurance with Heterogeneous Beliefs and Disagreement About Zero-Probability Events

Risks, 4(3):29, 2016

32 Pages Posted: 15 Mar 2015 Last revised: 16 Mar 2017

Date Written: March 12, 2015

Abstract

Arrow’s classical result on the optimality of the deductible indemnity schedule holds in a situation where the insurer is a risk-neutral Expected-Utility (EU) maximizer, the insured is a risk-averse EU-maximizer, and the two parties share the same probabilistic beliefs about the realizations of the underlying insurable loss. Recently, Ghossoub (2013) re-examined Arrow’s problem in a setting where the two parties have different subjective beliefs about the realizations of the insurable random loss, and he showed that if these beliefs satisfy a certain compatibility condition that is weaker than the monotone likelihood ratio condition, then optimal indemnity schedules exist and are nondecreasing in the loss. However, Ghossoub (2013) only gave a characterization of these optimal indemnity schedules in the special case of a monotone likelihood ratio. In this paper, we consider the general case, allowing for disagreement about zero-probability events. We fully characterize the class of all optimal indemnity schedules that are nondecreasing in the loss, in terms of their distribution under the insured’s probability measure, and we obtain Arrow’s classical result as well as one of the results of Ghossoub (2013) as corollaries. Finally, we formalize Marshall’s (1991) argument that, in a setting of belief heterogeneity, an optimal indemnity schedule may take “any” shape.

Keywords: Optimal insurance, deductible contract, subjective probability, heterogeneous beliefs, mutual singularity

JEL Classification: G22, C02, D86

Suggested Citation

Ghossoub, Mario, Optimal Insurance with Heterogeneous Beliefs and Disagreement About Zero-Probability Events (March 12, 2015). Risks, 4(3):29, 2016. Available at SSRN: https://ssrn.com/abstract=2577967 or http://dx.doi.org/10.2139/ssrn.2577967

Mario Ghossoub (Contact Author)

University of Waterloo ( email )

Dept. of Statistics & Actuarial Science
200 University Ave. W.
Waterloo, Ontario N2L 3G1
Canada

HOME PAGE: http://uwaterloo.ca/scholar/mghossou

Register to save articles to
your library

Register

Paper statistics

Downloads
44
Abstract Views
308
PlumX Metrics