Download this Paper Open PDF in Browser

Forecasting High Tide: Predicting Times of Elevated Activity in Online Social Media

21 Pages Posted: 5 Apr 2015  

Jimpei Harada

University of Maryland

David Darmon

University of Maryland

Michelle Girvan

University of Maryland, College Park

William Rand

North Carolina State University

Date Written: April 3, 2015

Abstract

Social media provides a powerful platform for influencers to broadcast content to a large audience of followers. In order to reach the greatest number of users, an important first step is to identify times when a large portion of a target population is active on social media, which requires modeling the behavior of those individuals. We propose three methods for behavior modeling: a simple seasonality approach based on time-of-day and day-of-week, an autoregressive approach based on aggregate fluctuations from seasonality, and an aggregation-of-individuals approach based on modeling the behavior of individual users. The aggregation-of-individuals approach uses the framework of computational mechanics to automatically infer a state machine that describes the behavior of an individual based on his/her past behavior. We test these methods on data collected from a set of users on Twitter in 2011 and 2012. We find that the performance of the methods at predicting times of high activity depends strongly on the tradeoff between true and false positives, with no method dominating. Our results highlight the challenges and opportunities involved in modeling complex social systems, and demonstrate how influencers interested in forecasting potential user engagement can use complexity modeling to make better decisions.

Keywords: complex systems, social media, prediction, time series

Suggested Citation

Harada, Jimpei and Darmon, David and Girvan, Michelle and Rand, William, Forecasting High Tide: Predicting Times of Elevated Activity in Online Social Media (April 3, 2015). Robert H. Smith School Research Paper No. RHS 2589568. Available at SSRN: https://ssrn.com/abstract=2589568 or http://dx.doi.org/10.2139/ssrn.2589568

Jimpei Harada

University of Maryland ( email )

College Park
College Park, MD 20742
United States

David Darmon (Contact Author)

University of Maryland ( email )

College Park
College Park, MD 20742
United States

Michelle Girvan

University of Maryland, College Park ( email )

College Park, MD 20742
United States
301.405.1610 (Phone)

William Rand

North Carolina State University ( email )

Poole College of Management
Box 7229, North Carolina State University
Raleigh, NC North Carolina 27695-7229
United States
7347177965 (Phone)

HOME PAGE: http://billrand.org

Paper statistics

Downloads
292
Rank
87,107
Abstract Views
1,012