Dynamic Scheduling in a Many-Server Multi-Class System: The Role of Customer Impatience in Large Systems

50 Pages Posted: 27 Jan 2016 Last revised: 14 Mar 2017

See all articles by Jeunghyun Kim

Jeunghyun Kim

Korea University Business School

Ramandeep S. Randhawa

University of Southern California

Amy Ward

The University of Chicago Booth School of Business

Date Written: August 22, 2016


Problem Definition: We study optimal scheduling of customers in service systems, such as call centers. In such systems, customers typically hang up and abandon the system if their wait for service is too long. Such abandonments are detrimental for the system, and so managers typically use scheduling as a tool to mitigate it. In this paper we study the interplay between customer impatience and scheduling decisions when managing heterogeneous customer classes.

Academic/Practical Relevance: Call centers constitute a large industry, that has a global spending of around $300 billion, and employs more than 15 million people worldwide. Our work focuses on improving call center operations which can reduce costs and improve customer satisfaction. Mathematically, customer patience is typically modeled as exponentially distributed for tractability. Our work makes inroads into relaxing this restrictive assumption to allow modeling more realistic call center situations.

Methodology: We use heavy-traffic motivated asymptotic queueing machinery, that provides us the traction to successfully capture and incorporate the customer impatience distribution into the scheduling problem. In our approach, the scheduling problem reduces to a Diffusion Control Problem, which we solve to propose near-optimal scheduling policies.

Results: We propose near-optimal scheduling policies that can be implemented by call centers to improve their QoS metrics. One of our main results is that for a class of parameters, we establish sufficient conditions for both the optimality and non-optimality of threshold policies.

Managerial Implications: Threshold policies are widely used for scheduling. Our work provides additional insight into whether these may be sub-optimal. Our work provides an easy to-implement alternative that can reduce customer abandonments considerably, for instance, our numerical results indicate that for a system with two customer types, the abandonment rate of one class can be lowered by 30% by using our policy relative to the best threshold policy.

Keywords: Service operations, dynamic scheduling, diffusion analysis

Suggested Citation

Kim, Jeunghyun and Randhawa, Ramandeep S. and Ward, Amy, Dynamic Scheduling in a Many-Server Multi-Class System: The Role of Customer Impatience in Large Systems (August 22, 2016). Available at SSRN: https://ssrn.com/abstract=2722085 or http://dx.doi.org/10.2139/ssrn.2722085

Jeunghyun Kim (Contact Author)

Korea University Business School ( email )

Anam-Dong, Seongbuk-Gu
Seoul 136-701, 136701

HOME PAGE: http://https://sites.google.com/site/jeunghyunkim

Ramandeep S. Randhawa

University of Southern California ( email )

Marshall School of Business
BRI 401, 3670 Trousdale Parkway
Los Angeles, CA 90089
United States

Amy Ward

The University of Chicago Booth School of Business ( email )

5807 S Woodlawn Ave
Chicago, IL 60637
United States

HOME PAGE: http://www.chicagobooth.edu/faculty/directory/w/amy-ward

Do you have negative results from your research you’d like to share?

Paper statistics

Abstract Views
PlumX Metrics