Privacy and Accountability in Black-Box Medicine

43 Pages Posted: 4 Apr 2016 Last revised: 30 Jul 2018

See all articles by Roger Allan Ford

Roger Allan Ford

University of New Hampshire Franklin Pierce School of Law; Information Society Project, Yale Law School

W. Nicholson Price II

University of Michigan Law School

Date Written: July 14, 2016

Abstract

Black-box medicine — the use of big data and sophisticated machine-learning techniques for health-care applications — could be the future of personalized medicine. Black-box medicine promises to make it easier to diagnose rare diseases and conditions, identify the most promising treatments, and allocate scarce resources among different patients. But to succeed, it must overcome two separate, but related, problems: patient privacy and algorithmic accountability. Privacy is a problem because researchers need access to huge amounts of patient health information to generate useful medical predictions. And accountability is a problem because black-box algorithms must be verified by outsiders to ensure they are accurate and unbiased, but this means giving outsiders access to this health information.

This article examines the tension between the twin goals of privacy and accountability and develops a framework for balancing that tension. It proposes three pillars of an effective system of privacy-preserving accountability: substantive limitations on the collection, use, and disclosure of patient information; independent gatekeepers regulating information sharing between those developing and verifying black-box algorithms; and information-security requirements to prevent unintentional disclosures of patient information. It draws on a similar debate in the field of clinical trials, where disclosing information from past trials can lead to new treatments but also threatens patient privacy.

Keywords: machine learning, privacy, black-box medicine, predictive analytics, law and medicine

Suggested Citation

Ford, Roger Allan and Price II, William Nicholson, Privacy and Accountability in Black-Box Medicine (July 14, 2016). 23 Mich. Telecomm. & Tech. L. Rev. 1 (2016), Available at SSRN: https://ssrn.com/abstract=2758121

Roger Allan Ford

University of New Hampshire Franklin Pierce School of Law ( email )

Two White Street
Concord, NH 03301
United States

Information Society Project, Yale Law School

127 Wall Street
New Haven, CT 06511
United States

William Nicholson Price II (Contact Author)

University of Michigan Law School ( email )

625 South State Street
Ann Arbor, MI 48109-1215
United States

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
434
Abstract Views
2,712
Rank
130,016
PlumX Metrics