Lognormal-Mixture Dynamics and Calibration to Volatility Smiles and Skews
21 Pages Posted: 11 Jul 2001
Abstract
We introduce a general class of analytically tractable models for the dynamics of an asset price based on the assumption that the asset-price density is given by the mixture of known basic densities. We consider the lognormal-mixture model as a fundamental example, and for the first time we derive the related explicit dynamics and show that it leads to a stochastic differential equation admitting a unique strong solution. We also provide closed form formulas for option prices and analytical approximations for the implied volatility function. We then introduce the asset-price model that is obtained by shifting the previous lognormal-mixture dynamics and investigate its analytical tractability. We finally consider a specific example of calibration to real market option data.
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Transform Analysis and Asset Pricing for Affine Jump-Diffusions
By Darrell Duffie, Jun Pan, ...
-
Transform Analysis and Asset Pricing for Affine Jump-Diffusions
By Darrell Duffie, Jun Pan, ...
-
The Impact of Jumps in Volatility and Returns
By Michael S. Johannes, Bjorn Eraker, ...
-
Implied Volatility Functions: Empirical Tests
By Bernard Dumas, Jeff Fleming, ...
-
Recovering Risk Aversion from Option Prices and Realized Returns
-
Recovering Probabilities and Risk Aversion from Option Prices and Realized Returns
-
Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options
By Gurdip Bakshi, Nikunj Kapadia, ...
-
Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options
By Nikunj Kapadia, Gurdip Bakshi, ...
-
Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices
By Yacine Ait-sahalia and Andrew W. Lo