Distribution-Constrained Optimal Stopping
Forthcoming in Mathematical Finance
34 Pages Posted: 8 Jul 2017 Last revised: 30 Dec 2018
There are 2 versions of this paper
Distribution-Constrained Optimal Stopping
DistributionāConstrained Optimal Stopping
Date Written: May 13, 2016
Abstract
We solve the problem of optimal stopping of a Brownian motion subject to the constraint that the stopping time's distribution is a given measure consisting of finitely-many atoms. In particular, we show that this problem can be converted to a finite sequence of state-constrained optimal control problems with additional states corresponding to the conditional probability of stopping at each possible terminal time. The proof of this correspondence relies on a new variation of the dynamic programming principle for state-constrained problems which avoids measurable selection. We emphasize that distribution constraints lead to novel and interesting mathematical problems on their own, but also demonstrate an application in mathematical finance to model-free superhedging with an outlook on volatility.
Keywords: Robust hedging with a volatility outlook
Suggested Citation: Suggested Citation