Fair Resource Allocation in a Volatile Marketplace

56 Pages Posted: 6 Jun 2016 Last revised: 23 Oct 2018

See all articles by Mohammad Hossein Bateni

Mohammad Hossein Bateni

Google Inc.

Yiwei Chen

University of Cincinnati - Lindner College of Business

Dragos Ciocan

INSEAD

Vahab Mirrokni

Google Inc.

Date Written: October 21, 2018

Abstract

We consider a setting where a platform must dynamically allocate a collection of goods that arrive to the platform in an online fashion to budgeted buyers, as exempli ed by online advertising systems where platforms decide which impressions to serve to various advertisers. Such dynamic resource allocation problems are challenging for two reasons: (a) the platform must strike a balance between optimizing her own revenues and guaranteeing fairness to her (repeat) buyers and (b) the problem is inherently dynamic due to the uncertain, time-varying supply of goods available with the platform. We propose a stochastic approximation scheme akin to a dynamic market equilibrium. Our scheme relies on frequent re-solves of an Eisenberg-Gale convex program, and does not require the platform to have any knowledge about how the goods arrival processes evolve over time. The scheme fully extracts buyer budgets (thus maximizing platform revenues), while at the same time provides a 0:64 approximation of the proportionally fair allocation of goods achievable in the offine case, as long as the supply of goods comes from a wide family of (possibly non-stationary) Gaussian processes. We then deal with a multi-objective problem where the platform is concerned with both the proportional fairness and efficiency of the allocation, and propose a hybrid algorithm which achieves a 0:3 bi-criteria guarantee against fairness and efficiency. Finally, we build a sequence of datasets, one based on real AdX data and the other a public dataset released by Chinese DSP iPinYou, and use them to test the empirical performance of our schemes. We find that across these datasets, there is a surprising relationship between fairness and efficiency that can be used to tune the schemes to nearly optimal performance in practice.

Keywords: Dynamic Resource Allocation, Fairness, Matching Problems, Network Revenue Management, Online Advertising

Suggested Citation

Bateni, Mohammad Hossein and Chen, Yiwei and Ciocan, Dragos and Mirrokni, Vahab, Fair Resource Allocation in a Volatile Marketplace (October 21, 2018). Available at SSRN: https://ssrn.com/abstract=2789380 or http://dx.doi.org/10.2139/ssrn.2789380

Mohammad Hossein Bateni

Google Inc. ( email )

1600 Amphitheatre Parkway
Second Floor
Mountain View, CA 94043
United States

Yiwei Chen

University of Cincinnati - Lindner College of Business ( email )

P.O. Box 210195
Cincinnati, OH 45221-0195
United States

Dragos Ciocan (Contact Author)

INSEAD ( email )

Boulevard de Constance
77305 Fontainebleau Cedex
France

Vahab Mirrokni

Google Inc. ( email )

1600 Amphitheatre Parkway
Second Floor
Mountain View, CA 94043
United States

Register to save articles to
your library

Register

Paper statistics

Downloads
249
rank
115,363
Abstract Views
1,379
PlumX