The Density of Distributions from the Bondesson Class

30 Pages Posted: 15 Jun 2016

See all articles by German Bernhart

German Bernhart

Technische Universität München (TUM)

Jan-Frederik Mai

XAIA Investment

Steffen Schenk

Technische Universität München (TUM)

Matthias A. Scherer

Technische Universität München (TUM)

Date Written: March 16, 2015

Abstract

In this paper, we derive an integral representation for the density of distributions from the Bondesson class, a large subclass of positive, infinitely divisible distributions. One striking advantage of this representation is its numerical stability: the oscillating integrand and the infinite integration bounds of the standard Bromwich Laplace inversion integral are circumvented, discretization errors are reduced and truncation errors are eliminated. This significantly enlarges the class of numerically tractable stochastic time transformations. Furthermore, we discuss the pricing of collateralized debt obligations for a large class of portfolio default models.

Keywords: Bernstein Function, Bondesson Class, Bromwich Inversion, Contour Transformation, Laplace Inversion, Lévy Subordinator

Suggested Citation

Bernhart, German and Mai, Jan-Frederik and Schenk, Steffen and Scherer, Matthias A., The Density of Distributions from the Bondesson Class (March 16, 2015). Journal of Computational Finance, Vol. 18, No. 3, Pages 99–128, 2015, Available at SSRN: https://ssrn.com/abstract=2795596

German Bernhart

Technische Universität München (TUM) ( email )

Arcisstrasse 21
Munich, DE 80333
Germany

Jan-Frederik Mai

XAIA Investment ( email )

Sonnenstraße 19
München, 80331
Germany

Steffen Schenk

Technische Universität München (TUM) ( email )

Arcisstrasse 21
Munich, DE 80333
Germany

Matthias A. Scherer (Contact Author)

Technische Universität München (TUM) ( email )

Arcisstrasse 21
Munich, DE 80333
Germany

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
0
Abstract Views
908
PlumX Metrics