A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes
25 Pages Posted: 6 Sep 2001
Date Written: September 2001
Abstract
Option values are well-known to be the integral of a discounted transition density times a payoff function; this is just martingale pricing. It's usually done in 'S-space', where S is the terminal security price. But, for Levy processes the S-space transition densities are often very complicated, involving many special functions and infinite summations. Instead, we show that it's much easier to compute the option value as an integral in Fourier space - and interpret this as a Parseval identity. The formula is especially simple because (i) it's a single integration for any payoff and (ii) the integrand is typically a compact expression with just elementary functions. Our approach clarifies and generalizes previous work using characteristic functions and Fourier inversions. For example, we show how the residue calculus leads to several variation formulas, such as a well-known, but less numerically efficient, 'Black-Scholes style' formula for call options. The result applies to any European-style, simple or exotic option (without path-dependence) under any Levy process with a known characteristic function.
JEL Classification: G13
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
A Jump Diffusion Model for Option Pricing
By Steven Kou
-
Option Pricing Under a Double Exponential Jump Diffusion Model
By Steven Kou and Hui Wang
-
The Term Structure of Simple Forward Rates with Jump Risk
By Paul Glasserman and Steven Kou