The Probability of Backtest Overfitting
31 Pages Posted: 21 Sep 2016
There are 2 versions of this paper
The Probability of Backtest Overfitting
Date Written: September 19, 2016
Abstract
Many investment firms and portfolio managers rely on backtests (ie, simulations of performance based on historical market data) to select investment strategies and allocate capital. Standard statistical techniques designed to prevent regression overfitting, such as hold-out, tend to be unreliable and inaccurate in the context of investment backtests. We propose a general framework to assess the probability of backtest overfitting (PBO).We illustrate this framework with specific generic, model-free and nonparametric implementations in the context of investment simulations; we call these implementations combinatorially symmetric cross-validation (CSCV). We show that CSCV produces reasonable estimates of PBO for several useful examples.
Keywords: backtest, overfitting, investment strategy, Sharpe ratio optimization, performance degradation
Suggested Citation: Suggested Citation