Generating Random Networks Without Short Cycles
36 Pages Posted: 5 Oct 2016 Last revised: 4 Jan 2018
Date Written: October 4, 2016
Abstract
Random graph generation is an important tool for studying large complex networks. Despite abundance of random graph models, constructing models with application-driven constraints is poorly understood. In order to advance state-of-the-art in this area, we focus on random graphs without short cycles as a stylized family of graphs, and propose the RandGraph algorithm for randomly generating these graphs. For any constant k, when m is a certain super-linear function of n, RandGraph generates an asymptotically uniform random graph with n vertices, m edges, and no cycle of length at most k using O(n^2m) operations. We also characterize the approximation error for finite values of n. To the best of our knowledge, this is the first polynomial-time algorithm for the problem. RandGraph works by sequentially adding m edges to an empty graph with n vertices. Recently, such sequential algorithms have been successful for random sampling problems. Our main contributions to this line of research includes introducing a new approach for sequentially approximating edge-specific probabilities at each step of the algorithm, and providing a new method for analyzing it.
Keywords: Network sampling, Random graph, Poisson approximation, Janson inequality
Suggested Citation: Suggested Citation
Here is the Coronavirus
related research on SSRN
