People Reject (Superior) Algorithms Because They Compare Them to Counter-Normative Reference Points

44 Pages Posted: 8 Dec 2016 Last revised: 20 Nov 2017

See all articles by Berkeley J. Dietvorst

Berkeley J. Dietvorst

The University of Chicago Booth School of Business

Date Written: December 6, 2016

Abstract

People often choose to use human forecasts instead of algorithmic forecasts that perform better on average; however, it is unclear what decision process leads people to rely on (inferior) human predictions instead of (superior) algorithmic predictions. In this paper, I propose that people choose between forecasting methods by (1) using their status quo forecasting method by default and (2) deciding whether or not to use the alternative forecasting method by comparing its performance to a counter-normative reference point that is often independent of the performance of the default. This process leads people to reject a superior algorithm when (1) the algorithm serves as their alternative forecasting method and (2) the algorithm performs better than their default forecasting method but fails to meet their reference point for forecasting performance. I present the results of five studies that are consistent with this decision process. In Studies 1 through 4, participants were less likely to use a superior algorithm to complete an incentivized forecasting task when they were assigned to a relatively higher performance goal. This behavior persisted when participants recognized that their performance goal did not provide information about the relative performance of their two forecasting options, and even persisted among those participants who believed that the algorithm was the best performing option. Study 5 shows that this pattern of behavior reverses when people are assigned to use an algorithm as their default forecasting method.

Keywords: Decision Making, Defaults, Decision Aids, Heuristics and Biases, Forecasting

Suggested Citation

Dietvorst, Berkeley, People Reject (Superior) Algorithms Because They Compare Them to Counter-Normative Reference Points (December 6, 2016). Available at SSRN: https://ssrn.com/abstract=2881503 or http://dx.doi.org/10.2139/ssrn.2881503

Berkeley Dietvorst (Contact Author)

The University of Chicago Booth School of Business ( email )

Chicago, IL 60637
United States

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
690
Abstract Views
2,991
Rank
121,529
PlumX Metrics