Finite-Sample Generalized Confidence Distributions and Sign-Based Robust Estimators In Median Regressions with Heterogeneous Dependent Errors

49 Pages Posted: 22 Feb 2017 Last revised: 24 Feb 2017

Elise Coudin

National Institute of Statistics and Economic Studies (INSEE) - Center for Research in Economics and Statistics (CREST)

Jean-Marie Dufour

McGill University

Date Written: January 31, 2017

Abstract

We study the problem of estimating the parameters of a linear median regression without any assumption on the shape of the error distribution -- including no condition on the existence of moments -- allowing for heterogeneity (or heteroskedasticity) of unknown form, noncontinuous distributions, and very general serial dependence (linear and nonlinear). This is done through a reverse inference approach, based on a distribution-free testing theory [Coudin and Dufour (2009, The Econometrics Journal)], from which confidence sets and point estimators are subsequently generated. The estimation problem is tackled in two complementary ways. First, we show how confidence distributions for model parameters can be applied in such a context. Such distributions -- which can be interpreted as a form of fiducial inference -- provide a frequency-based method for associating probabilities with subsets of the parameter space (like posterior distributions do in a Bayesian setup) without the introduction of prior distributions. We consider generalized confidence distributions applicable to multidimensional parameters, and we suggest the use of a projection technique for confidence inference on individual model parameters. Second, we propose point estimators, which have a natural association with confidence distributions. These estimators are based on maximizing test p-values and inherit robustness properties from the generating distribution-free tests. Both finite-sample and large-sample properties of the proposed estimators are established under weak regularity conditions. We show they are median unbiased (under symmetry and estimator unicity) and possess equivariance properties. Consistency and asymptotic normality are established without any moment existence assumption on the errors, allowing for noncontinuous distributions, heterogeneity and serial dependence of unknown form. These conditions are considerably weaker than those used to show corresponding results for LAD estimators. In a Monte Carlo study of bias and RMSE, we show sign-based estimators perform better than LAD-type estimators in heteroskedastic settings. We present two empirical applications, which involve financial and macroeconomic data, both affected by heavy tails (non-normality) and heteroskedasticity: a trend model for the S&P index, and an equation used to study β-convergence of output levels across U.S. States.

Keywords: Sign-based methods; median regression; test inversion; Hodges-Lehmann estimators; confidence distributions; p-value function; least absolute deviation estimators; quantile regressions; sign test; simultaneous inference; Monte Carlo tests; projection methods; non-normality; heteroskedasticity; serial

JEL Classification: C13, C12, C14, C15

Suggested Citation

Coudin, Elise and Dufour, Jean-Marie, Finite-Sample Generalized Confidence Distributions and Sign-Based Robust Estimators In Median Regressions with Heterogeneous Dependent Errors (January 31, 2017). Available at SSRN: https://ssrn.com/abstract=2919933

Elise Coudin

National Institute of Statistics and Economic Studies (INSEE) - Center for Research in Economics and Statistics (CREST) ( email )

15 Boulevard Gabriel Peri
Malakoff Cedex, 1 92245
France

Jean-Marie Dufour (Contact Author)

McGill University ( email )

Department of Economics, McGill University
Leacock Building Room 443, 855 Sherbrooke West
Montreal, Quebec H3A 2T7
Canada
(1) 514 398 6071 (Phone)
(1) 514 398 4800 (Fax)

HOME PAGE: http://www.jeanmariedufour.com

Paper statistics

Downloads
9
Abstract Views
39