Estimating Changes in Trend Growth of Total Factor Productivity: Kalman and H-P Filters Versus a Markov-Switching Framework

39 Pages Posted: 7 Dec 2001

See all articles by Mark W. French

Mark W. French

Board of Governors of the Federal Reserve System - Macroeconomic Analysis Section

Date Written: September 2001

Abstract

Trend growth in total factor productivity (TFP) is unobserved; it is frequently assumed to evolved continuously over time. That assumption is inherent in the use of the Hodrick-Prescott or Bandpass filter to extract trend. Similarly, the Kalman filter/unobserved-components approach assumes that changes in the trend growth rate are normally distributed. In fact, however, innovations to the trend growth rate of total factor productivity are far from normal. The distribution is fat-tailed, with large outliers in 1973. Allowing for these outliers, the estimated trend growth rate changes only infrequently. A nonlinear filtering approach is probably better suited to capturing the infrequent past and possible current shifts in trend growth of TFP. One such approach is the Markov-switching model, which is estimated and tested in this paper. The Markov-switching approach appears to have several advantages over repeated Andrews tests.

Keywords: Markov switching, total factor productivity, multifactor productivity

JEL Classification: C1, O4

Suggested Citation

French, Mark W., Estimating Changes in Trend Growth of Total Factor Productivity: Kalman and H-P Filters Versus a Markov-Switching Framework (September 2001). Available at SSRN: https://ssrn.com/abstract=293105 or http://dx.doi.org/10.2139/ssrn.293105

Mark W. French (Contact Author)

Board of Governors of the Federal Reserve System - Macroeconomic Analysis Section

20th & C. St., N.W.
Mailstop 80
Washington, DC 20551
United States
202-452-3801 (Phone)
202-452-3819 (Fax)

Here is the Coronavirus
related research on SSRN

Paper statistics

Downloads
518
Abstract Views
2,110
rank
61,734
PlumX Metrics