Two Artificial Neural Networks Meet in an Online Hub and Change the Future (Of Competition, Market Dynamics and Society)

54 Pages Posted: 10 Apr 2017 Last revised: 21 Jun 2017

Ariel Ezrachi

University of Oxford - Faculty of Law

Maurice E. Stucke

University of Tennessee College of Law; The Konkurrenz Group

Date Written: July 1, 2017

Abstract

In the future, one may imagine a new breed of antitrust humor. Jokes might start along the following lines: “Two Artificial Neural Network and one Nash equilibrium meet in an online (pub) hub. After a few milliseconds, a unique silent friendship is formed…”

Back to the present; we are not sure how this joke might end. Nor can we estimate how funny future consumers would find it. We can, however, explain, at present, how technological advancements have changed, and will continue to change, the dynamics of competition and subsequently the distribution of wealth in society. How algorithms may be used in stealth mode to stabilize and dampen market competition while retaining the façade of a competitive environment. That tale is at the heart of this paper.

We first raised algorithmic tacit collusion in 2015. Our recent book, Virtual Competition: The Promise and Perils of the Algorithm-Driven Economy, provides further context and analysis. We illustrate how online tacit collusion may emerge when products are generally homogeneous, sellers do not benefit from brand recognition or loyalty, and markets are transparent and concentrated.

Since our book elaborates on the four collusion scenarios, we begin here by outlining one model of tacit collusion and its manifestation online. Taking note of advancements in technology and emerging policies, we move the debate forward in reviewing the possible harm and means to address it. We illustrate with several case studies how the move to an online pricing environment, under certain market conditions, may harm the buyers’ welfare. We note how new technologies may undermine enforcers’ attempts to intervene - as stealth becomes a feature of future strategies.

That tale, of course, is not immune from disruptive strategies. We consider the testing of counter-measures in an “algorithmic collusion incubator” to better understand what effectively destabilizes algorithmic tacit collusion. Further, we consider the effects and likelihood of secret dealings. We note how, somewhat counter-intuitively, secret deals in an online environment could reduce, at times, our welfare.

Notes: * A version of this paper was submitted as background note to the OECD Roundtable on Algorithms and Collusion (Friday, 23 June 2017)

Keywords: collusion, competition, algorithms, behavioral discrimination

JEL Classification: K21, L40, L41

Suggested Citation

Ezrachi, Ariel and Stucke, Maurice E., Two Artificial Neural Networks Meet in an Online Hub and Change the Future (Of Competition, Market Dynamics and Society) (July 1, 2017). Oxford Legal Studies Research Paper No. 24/2017; University of Tennessee Legal Studies Research Paper No. 323. Available at SSRN: https://ssrn.com/abstract=2949434 or http://dx.doi.org/10.2139/ssrn.2949434

Ariel Ezrachi (Contact Author)

University of Oxford - Faculty of Law ( email )

Oxford
United Kingdom

Maurice E. Stucke

University of Tennessee College of Law ( email )

1505 W. Cumberland Ave.
Knoxville, TN 37996
United States
865-974-9816 (Phone)

HOME PAGE: http://law.utk.edu/people/maurice-stucke/

The Konkurrenz Group ( email )

5335 Wisconsin Ave., NW
Suite 440
Washington, DC 20015
United States

Paper statistics

Downloads
717
Rank
28,050
Abstract Views
2,195