An Inverse Optimal Stopping Problem for Diffusion Processes

28 Pages Posted: 28 Apr 2017  

Thomas Kruse

Université d'Évry - Departement de Mathematiques

Philipp Strack

University of California, Berkeley - Department of Economics

Date Written: April 27, 2017

Abstract

Let X be a one-dimensional diffusion and let g : [0, T ] × ℝ → ℝ be a payoff function depending on time and the value of X. The paper analyzes the inverse optimal stopping problem of finding a time-dependent function π : [0, T ] → ℝ such that a given stopping time τ* is a solution of the stopping problem
supτ

Keywords: Optimal Stopping, Reflected Stochastic Processes, Dynamic Mechanism Design, Dynamic Implementability

Suggested Citation

Kruse, Thomas and Strack, Philipp, An Inverse Optimal Stopping Problem for Diffusion Processes (April 27, 2017). Available at SSRN: https://ssrn.com/abstract=2959702 or http://dx.doi.org/10.2139/ssrn.2959702

Thomas Kruse

Université d'Évry - Departement de Mathematiques ( email )

Rue du Pere Jarlan
Evry, 91025
France

Philipp Strack (Contact Author)

University of California, Berkeley - Department of Economics ( email )

549 Evans Hall #3880
Berkeley, CA 94720-3880
United States

HOME PAGE: http://philippstrack.com

Paper statistics

Downloads
10
Abstract Views
37