Can Robots Write Treaties? Using Recurrent Neural Networks to Draft International Investment Agreements

in F. Bex and S. Villata (eds.), JURIX: Legal Knowledge and Information Systems, IOS Press, 2016, pp. 119-114.

6 Pages Posted: 14 Jun 2017

See all articles by Wolfgang Alschner

Wolfgang Alschner

University of Ottawa - Common Law Section

Dmitriy Skougarevskiy

European University at St. Petersburg

Date Written: December 12, 2016

Abstract

Negotiating international investment agreements is costly, complex, and prone to power asymmetries. Would it then not make sense to let computers do part of the work? In this contribution, we train a character-level recurrent neural network (RNN) to write international investment agreements. Benefiting from the formulaic nature of treaty language, the RNN generates texts of lawyer-like quality on the article-level, but fails to compose treaties in a legally sensible manner. By embedding RNNs in a user-controlled pipeline we overcome this problem. First, users can specify the treaty content categories ex ante on which the RNN is trained. Second, the pipeline allows a filtering of output ex post by identifying output that corresponds most closely to a user-selected treaty design benchmark. The result is an improved system that produces meaningful texts with legally sensible composition. We test the pipeline by comparing predicted treaties to actually concluded ones and by verifying that our filter captures latent policy preferences by predicting the outcome of current investment treaty negotiations between China and the United States.

Keywords: recurrent neural network, investment treaties, machine learning, legal drafting, text-as-data, artificial intelligence

Suggested Citation

Alschner, Wolfgang and Skougarevskiy, Dmitriy, Can Robots Write Treaties? Using Recurrent Neural Networks to Draft International Investment Agreements (December 12, 2016). in F. Bex and S. Villata (eds.), JURIX: Legal Knowledge and Information Systems, IOS Press, 2016, pp. 119-114., Available at SSRN: https://ssrn.com/abstract=2984935 or http://dx.doi.org/10.2139/ssrn.2984935

Wolfgang Alschner (Contact Author)

University of Ottawa - Common Law Section ( email )

57 Louis Pasteur Street
Ottawa, K1N 6N5
Canada

Dmitriy Skougarevskiy

European University at St. Petersburg ( email )

6/1A Gagarinskaya Street
St. Petersburg, 191187
Russia

HOME PAGE: http://eusp.org

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
249
Abstract Views
1,452
Rank
196,310
PlumX Metrics