Identification of Static and Dynamic Games of Incomplete Information with Multiple Equilibria in the Data

31 Pages Posted: 13 Jun 2017 Last revised: 19 Feb 2018

Date Written: February 16, 2017

Abstract

I study identification of games of incomplete information, both static and dynamic, when there are multiple equilibria in the data. In the case of static games, I show that if multiplicity disappears at a small subset of the support of the observables, payoffs are identified. All the equilibria of the model are also then identified. As \textit{payoff relevant} unobservables are an alternative explanation to multiple equilibria for observed correlation in player actions conditional on observables, I allow for this type of variable and show that as long as a conditional exclusion restriction on the distribution of the unobservables is satisfied, payoffs, equilibria and the distribution of the payoff relevant unobservable are identified. Additionally, letting $A$ be the number of choice alternatives, $N$ the number of players and $K$ the number of equilibria, as long as $A^N\geq K$, I show that equilibrium selection probabilities are also identified, a result that is useful for considering the effects of counterfactual experiments in the presence of multiple equilibria. I extend the framework to study identification in dynamic games. The static approach extends in a straightforward way to finite horizon (non-stationary) games, but not to the more common case of infinite horizon (stationary) games. I show that by making additional testable restrictions on the transition probabilities, a large class of stationary dynamic games are also identified.

Keywords: Games of Incomplete Information, Dynamic Games, Identification, Multiple Equilibria in the Data, Equilibrium Selection

JEL Classification: C13, C35, C57, C72

Suggested Citation

Magesan, Arvind, Identification of Static and Dynamic Games of Incomplete Information with Multiple Equilibria in the Data (February 16, 2017). Available at SSRN: https://ssrn.com/abstract=2985097 or http://dx.doi.org/10.2139/ssrn.2985097

Arvind Magesan (Contact Author)

University of Calgary ( email )

2500 University DR NW
Calgary, AB
Canada

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
73
Abstract Views
474
rank
403,004
PlumX Metrics