Airlander

Journal of Aircraft and Spacecraft Technology 2017, 1(2)

30 Pages Posted: 10 Jun 2019 Last revised: 2 Jul 2019

See all articles by Relly Victoria Petrescu

Relly Victoria Petrescu

Polytechnic University of Bucharest - ARoTMM-IFToMM

Raffaella Aversa

Advanced Material Lab - Department of Architecture and Industrial Design

B. Akash

American University of Ras Al Khaimah

Juan Corchado

University of Salamanca

Samuel Kozaitis

Florida Institute of Technology

Taher Abu-Lebdeh

North Carolina Agricultural and Technical State University

Antonio Apicella

Advanced Material Lab - Department of Architecture and Industrial Design

Florian Ion Petrescu

Polytechnic University of Bucharest - ARoTMM-IFToMM

Date Written: November 19, 2017

Abstract

Man always dreamed of flying. The important thing is not that it succeeded but that it has evolved permanently, improving its flight. The main problem in aviation was also the safety of the flight. How to keeps in the air, even when serious problems arise. Generally, the porting was made with engines and wings. But such support can’t be very secure. The only very safe means to date has proved to be the airship. Everything started from the balloons with those men first traveled, they being lighter than the air. Today it seems very strange to revive the airships, but here we do it. A balloon or airship, being lighter than air, can keep in the air for a long time, without wings, without engines, without energy consumption. For now, it's the only way to fly safely, even if it looks outdated or difficult. No other flying device can ensure vertical take-off and landing, regardless of geographic and meteorological conditions and staying in the air for a long time at a certain height, regardless of weather or situation. Today, some devices can be built to cancel the gravitational field using electromagnetic waves. Even though they have not been officially presented and have not yet been introduced into civil aviation, they will probably represent the dynamic and safe way of flying in the near future. But they can also have electromagnetic or software interruptions and consume a lot of energy. So, whether we like it or not, the safest way to fly is the one with the balloon. A modern airship can be built to fly at any desired altitude, even very close to the ground, higher or very higher. Airlander, which has 48 passengers, needs helium. He will be able to stay in the air for two weeks without landing, devastating at a cruising speed of 145 km/h at an altitude of 6,000 m. It can have a load of 10 tons aboard. Many believe that four-engine cars are approaching because, unlike conventional airplanes, they pollute very little and are not booming. In addition, Airlander can take off vertically, as a helicopter, meaning it does not need trace. It can land on snow, ice, dessert or even water. British company Hybrid Air Vehicles was the developer of the US Army, but the project was abandoned in 2013, when the funds were reduced. Behind the project, Iron Maiden, Bruce Dickinson, invested 250,000 pounds. Money came from both the British government and the EU. Airlander was tested in November 2015 and was presented to the public in March 2016.

Note: © 2017 Relly Victoria Virgil Petrescu, Raffaella Aversa, Bilal Akash, Juan Corchado, Filippo Berto, Samuel P. Kozaitis, Taher M. Abu-Lebdeh, Antonio Apicella and Florian Ion Tiberiu Petrescu. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Suggested Citation

Petrescu, Relly Victoria and Aversa, Raffaella and Akash, B. and Corchado, Juan and Kozaitis, Samuel and Abu-Lebdeh, Taher and Apicella, Antonio and Petrescu, Florian Ion, Airlander (November 19, 2017). Journal of Aircraft and Spacecraft Technology 2017, 1(2). Available at SSRN: https://ssrn.com/abstract=3074000

Relly Victoria Petrescu

Polytechnic University of Bucharest - ARoTMM-IFToMM ( email )

Romania

Raffaella Aversa

Advanced Material Lab - Department of Architecture and Industrial Design ( email )

81031 Aversa (CE)
Italy

B. Akash

American University of Ras Al Khaimah ( email )

American University of Ras Al Khaimah
School of Graduate Studies and Research
Ras Al Khaimah, RAK 10021
United Arab Emirates

HOME PAGE: http://www.aurak.ac.ae

Juan Corchado

University of Salamanca ( email )

Campus Miguel de Unamuno
ES-37007 Salamanca, Salamanca 23007
Spain

Samuel Kozaitis

Florida Institute of Technology ( email )

150 West University Blvd.
Melbourne, FL 32901-6975
United States

Taher Abu-Lebdeh

North Carolina Agricultural and Technical State University ( email )

1601 E. Market St.
Greensboro, NC 27411
United States

Antonio Apicella

Advanced Material Lab - Department of Architecture and Industrial Design ( email )

81031 Aversa (CE)
Italy

Florian Ion Petrescu (Contact Author)

Polytechnic University of Bucharest - ARoTMM-IFToMM ( email )

Romania

Register to save articles to
your library

Register

Paper statistics

Downloads
130
Abstract Views
428
rank
221,223
PlumX Metrics