Posterior Means and Precisions of the Coefficients in Linear Models with Highly Collinear Regressors

24 Pages Posted: 28 Nov 2017

See all articles by M. Hashem Pesaran

M. Hashem Pesaran

University of Southern California - Department of Economics; University of Cambridge - Trinity College (Cambridge)

Ron Smith

Birkbeck College

Multiple version iconThere are 2 versions of this paper

Date Written: November 7, 2017

Abstract

When there is exact collinearity between regressors, their individual coefficients are not identified, but given an informative prior their Bayesian posterior means are well defined. The case of high but not exact collinearity is more complicated but similar results follow. Just as exact collinearity causes non-identification of the parameters, high collinearity can be viewed as weak identification of the parameters, which we represent, in line with the weak instrument literature, by the correlation matrix being of full rank for a finite sample size T, but converging to a rank deficient matrix as T goes to infinity. This paper examines the asymptotic behaviour of the posterior mean and precision of the parameters of a linear regression model for both the cases of exactly and highly collinear regressors. We show that in both cases the posterior mean remains sensitive to the choice of prior means even if the sample size is sufficiently large, and that the precision rises at a slower rate than the sample size. In the highly collinear case, the posterior means converge to normally distributed random variables whose mean and variance depend on the priors for coefficients and precision. The distribution degenerates to fixed points for either exact collinearity or strong identification. The analysis also suggests a diagnostic statistic for the highly collinear case, which is illustrated with an empirical example.

An updated version of this paper can be found at: http://ssrn.com/abstract=3264842

Keywords: Bayesian identification, multicollinear regressions, weakly identified regression coefficients, highly collinear regressors

JEL Classification: C11, C18

Suggested Citation

Pesaran, M. Hashem and Smith, Ron P., Posterior Means and Precisions of the Coefficients in Linear Models with Highly Collinear Regressors (November 7, 2017). USC-INET Research Paper No. 17-34, Available at SSRN: https://ssrn.com/abstract=3076052 or http://dx.doi.org/10.2139/ssrn.3076052

M. Hashem Pesaran (Contact Author)

University of Southern California - Department of Economics

3620 South Vermont Ave. Kaprielian (KAP) Hall 300
Los Angeles, CA 90089
United States

University of Cambridge - Trinity College (Cambridge) ( email )

United Kingdom

Ron P. Smith

Birkbeck College ( email )

Malet Street
London WC1E 7HX
United Kingdom
+44 207 631 6413 (Phone)
+44 207 631 6416 (Fax)

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
24
Abstract Views
427
PlumX Metrics