Non-Competing Persuaders

69 Pages Posted: 30 Nov 2017 Last revised: 13 Aug 2019

See all articles by Jiemai Wu

Jiemai Wu

The University of Sydney - School of Economics

Date Written: July 26, 2019

Abstract

I study Bayesian persuasion games with multiple persuaders in which the persuaders are non-competing: all persuaders want the decision maker to take the same action, regardless of the state. In the case of a single persuader, it is known from previous research that the persuader-optimal information design leaves the decision maker with no surplus. In this paper, I show that with two or more non-competing persuaders and independent tests, there are always equilibria in which the decision maker receives surplus. If there is exogenous noise then the decision maker receives surplus in every symmetric equilibrium, provided the number of persuaders is sufficiently large; asymptotically, the decision maker learns the true state in every Pareto optimal symmetric equilibrium with infinitely many persuaders. Moreover, with sufficient exogenous noise, having more than one persuader not only improves the welfare of the decision maker but it also improves the welfare of the persuaders.

Keywords: Bayesian persuasion, multiple identical persuaders, endogenous information design, imperfect information

JEL Classification: C72, D83

Suggested Citation

Wu, Jiemai, Non-Competing Persuaders (July 26, 2019). Available at SSRN: https://ssrn.com/abstract=3077451 or http://dx.doi.org/10.2139/ssrn.3077451

Jiemai Wu (Contact Author)

The University of Sydney - School of Economics ( email )

Social Sciences Building
Room 510
Sydney, NSW 2006
Australia

Register to save articles to
your library

Register

Paper statistics

Downloads
65
Abstract Views
372
rank
344,794
PlumX Metrics