Fairness in Machine Learning: Lessons from Political Philosophy

Conference on Fairness, Accountability, and. Transparency, New York, Forthcoming

Proceedings of Machine Learning Research, Vol. 81, p. 1–11, Forthcoming

11 Pages Posted: 14 Dec 2017

Date Written: December 8, 2017

Abstract

What does it mean for a machine learning model to be ‘fair’, in terms which can be operationalised? Should fairness consist of ensuring everyone has an equal probability of obtaining some benefit, or should we aim instead to minimise the harms to the least advantaged? Can the relevant ideal be determined by reference to some alternative state of affairs in which a particular social pattern of discrimination does not exist? Various definitions proposed in recent literature make different assumptions about what terms like discrimination and fairness mean and how they can be defined in mathematical terms. Questions of discrimination, egalitarianism and justice are of significant interest to moral and political philosophers, who have expended significant efforts in formalising and defending these central concepts. It is therefore unsurprising that attempts to formalise ‘fairness’ in machine learning contain echoes of these old philosophical debates. This paper draws on existing work in moral and political philosophy in order to elucidate emerging debates about fair machine learning.

Keywords: fairness, discrimination, machine learning, algorithmic decision-making, egalitarianism

Suggested Citation

Binns, Reuben, Fairness in Machine Learning: Lessons from Political Philosophy (December 8, 2017). Conference on Fairness, Accountability, and. Transparency, New York, Forthcoming , Proceedings of Machine Learning Research, Vol. 81, p. 1–11, Forthcoming , Available at SSRN: https://ssrn.com/abstract=3086546

Reuben Binns (Contact Author)

University of Oxford ( email )

Mansfield Road
Oxford, Oxfordshire OX1 4AU
United Kingdom

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
771
Abstract Views
3,096
Rank
63,632
PlumX Metrics