Triton for Nuclear Fusion

American Journal of Engineering and Applied Sciences Volume 10, Issue 4 (2017)

9 Pages Posted: 10 Jun 2019 Last revised: 17 Jul 2019

See all articles by Raffaella Aversa

Raffaella Aversa

Advanced Material Lab - Department of Architecture and Industrial Design

Relly Victoria Petrescu

Polytechnic University of Bucharest - ARoTMM-IFToMM

Antonio Apicella

Advanced Material Lab - Department of Architecture and Industrial Design

Samuel Kozaitis

Florida Institute of Technology

Taher Abu-Lebdeh

North Carolina Agricultural and Technical State University

B. Akash

American University of Ras Al Khaimah

Florian Ion Petrescu

Polytechnic University of Bucharest - ARoTMM-IFToMM

Date Written: December 16, 2017

Abstract

In the nuclear fusion process that is permanently produced in the stars (suns) there is a thermonuclear reaction that uses as the main raw material the very first isotope of hydrogen, namely the Protium. This process is possible due to the huge temperatures and the unimaginably high pressures existing inside a star. At very high temperatures and pressures, matter begins to break even at the nuclear level. The nucleons split off and then reunited to form other types of nuclei. If it was initially thought that temperatures of tens or even hundreds of millions of degrees would be needed, today it is already proven that a minimum needed is about 40 trillion degrees. Such huge temperature is very difficult to be achieved on the Earth right now. For this reason, a compensatory solution would be the production of the nuclear fusion reaction with accelerated particles. For this reason, we want to express a major idea, namely the shift to the next hydrogen isotope, 3H, Tritium, which is much less stable compared to the first two, with its widespread use for the achievement of nuclear-merging energy, here on the Earth. We can’t achieve such temperatures yet, on earth, in safety, but especially to keep them. Only through dangerous bombs they can produce and maintain. Then the only method of achieving nuclear fusion power on the ground remains the use of particle accelerators. For this reason, modern physics power stations must look like or contain a nuclear particle accelerator. Whether we produce the cold or hot fusion reaction, we will need at least one particle accelerator. For a long time, I thought that Tokamak-type installations that have a toroidal shape represent the optimal solution for modern fusion power plants. Today, however, we doubt this, because the achieved tor has a small radius of action (the diameter of the tor is too small). But that is not the main issue that this paper proposes. In this study we want to propose the transition to experimentation of nuclear fusion energy, by exploiting (use) of tritium, namely the triton. The idea is to use triton nuclear fuel. But not the triton resulting from the presence of deuterium, but only pure triton, obtained from other methods than deuterium reactions. We propose, therefore, the elimination of deuterium as fuel and the use of Triton in its place.

Note: © 2017 Raffaella Aversa, Relly Victoria Petrescu, Antonio Apicella, Samuel Kozaitis, Taher Abu-Lebdeh, Filippo Berto, Bilal Akash and Florian Ion Tiberiu Petrescu. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Suggested Citation

Aversa, Raffaella and Petrescu, Relly Victoria and Apicella, Antonio and Kozaitis, Samuel and Abu-Lebdeh, Taher and Akash, B. and Petrescu, Florian Ion, Triton for Nuclear Fusion (December 16, 2017). American Journal of Engineering and Applied Sciences Volume 10, Issue 4 (2017). Available at SSRN: https://ssrn.com/abstract=3092610

Raffaella Aversa

Advanced Material Lab - Department of Architecture and Industrial Design ( email )

81031 Aversa (CE)
Italy

Relly Victoria Petrescu

Polytechnic University of Bucharest - ARoTMM-IFToMM ( email )

Romania

Antonio Apicella

Advanced Material Lab - Department of Architecture and Industrial Design ( email )

81031 Aversa (CE)
Italy

Samuel Kozaitis

Florida Institute of Technology ( email )

150 West University Blvd.
Melbourne, FL 32901-6975
United States

Taher Abu-Lebdeh

North Carolina Agricultural and Technical State University ( email )

1601 E. Market St.
Greensboro, NC 27411
United States

B. Akash

American University of Ras Al Khaimah ( email )

American University of Ras Al Khaimah
School of Graduate Studies and Research
Ras Al Khaimah, RAK 10021
United Arab Emirates

HOME PAGE: http://www.aurak.ac.ae

Florian Ion Petrescu (Contact Author)

Polytechnic University of Bucharest - ARoTMM-IFToMM ( email )

Romania

Register to save articles to
your library

Register

Paper statistics

Downloads
180
Abstract Views
659
rank
170,232
PlumX Metrics