Sustainable Energy for Aerospace Vessels

Journal of Aircraft and Spacecraft Technology, Volume 1, Issue 4, Pages 234-240, 2017; DOI:10.3844/jastsp.2017.234.240

7 Pages Posted: 28 Dec 2017

See all articles by Relly Victoria Petrescu

Relly Victoria Petrescu

Polytechnic University of Bucharest - ARoTMM-IFToMM

Raffaella Aversa

Advanced Material Lab - Department of Architecture and Industrial Design

B. Akash

American University of Ras Al Khaimah

Filippo Berto

Norwegian University of Science and Technology (NTNU) - Department of Engineering Design and Materials

Antonio Apicella

Advanced Material Lab - Department of Architecture and Industrial Design

Florian Ion Petrescu

Polytechnic University of Bucharest - ARoTMM-IFToMM

Date Written: December 23, 2017

Abstract

The advances in solar technology and electric propulsion now offer the promise of new, very capable space transport systems that will allow us to effectively explore the solar system. NASA has developed many concepts of space-powered spacecraft with power levels ranging from tens to hundreds of kilowatts for robotic and asteroid-driven missions and Mars. This paper describes two electrical/chemical propulsion concepts developed over the last 5 years and discusses how they could be used to humanize the solar system. A possible sustainable solution for the supply of spacecraft power would be to achieve and utilization nuclear fusion energy. The paper briefly presents some contributions to obtaining nuclear fusion energy as a viable alternative to current energies. For the energy of spacecraft of the future, the combination of photovoltaic energy (obtained from the stars) and that produced by a nuclear reactor on fusion is essential. NASA is developing a strategy to send a crew to Mars by 2030. To achieve this goal, NASA plans to develop the technology for long-haul flights including advanced transportation work and living systems. Among these technologies, Solar Electric Propulsion (PES) has been identified as very effective in moving large masses through interplanetary space. For decades it has been known that missions outside the low Earth's orbit can be made cost-effective by PSA, but yet such space missions have not yet been done because the manufacturing technology is not advanced enough. NASA's recent investments in solar power systems and propulsion systems have now matured so that the 50 kW PSA is already ready to be put on flight missions. It has been demonstrated analytically that these technologies can be resized to systems with the power of several hundred kilowatts.

Note: © 2017 Relly Victoria Petrescu, Raffaella Aversa, Bilal Akash, Filippo Berto, Antonio Apicella and Florian Ion Tiberiu Petrescu. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Suggested Citation

Petrescu, Relly Victoria and Aversa, Raffaella and Akash, B. and Berto, Filippo and Apicella, Antonio and Petrescu, Florian Ion, Sustainable Energy for Aerospace Vessels (December 23, 2017). Journal of Aircraft and Spacecraft Technology, Volume 1, Issue 4, Pages 234-240, 2017; DOI:10.3844/jastsp.2017.234.240 . Available at SSRN: https://ssrn.com/abstract=3092655

Relly Victoria Petrescu

Polytechnic University of Bucharest - ARoTMM-IFToMM ( email )

Romania

Raffaella Aversa

Advanced Material Lab - Department of Architecture and Industrial Design ( email )

81031 Aversa (CE)
Italy

B. Akash

American University of Ras Al Khaimah ( email )

American University of Ras Al Khaimah
School of Graduate Studies and Research
Ras Al Khaimah, RAK 10021
United Arab Emirates

HOME PAGE: http://www.aurak.ac.ae

Filippo Berto

Norwegian University of Science and Technology (NTNU) - Department of Engineering Design and Materials ( email )

Trondheim
Norway

Antonio Apicella

Advanced Material Lab - Department of Architecture and Industrial Design ( email )

81031 Aversa (CE)
Italy

Florian Ion Petrescu (Contact Author)

Polytechnic University of Bucharest - ARoTMM-IFToMM ( email )

Romania

Register to save articles to
your library

Register

Paper statistics

Downloads
114
Abstract Views
420
rank
241,857
PlumX Metrics