A General Framework of Optimal Investment
32 Pages Posted: 10 Mar 2018 Last revised: 21 Jun 2019
Date Written: April 25, 2019
Abstract
In this paper, we propose a general framework of optimal investment and a collection of trading ideas, which combine probability and statistical theory with, potentially, machine learning techniques. The trading ideas are easy to implement and their validity is justified by full mathematical rigor. The framework is model-free and can, in principle, incorporate all categories of trading ideas into it. Simulation and backtesting studies show good performance of selected trading strategies under the proposed framework. Sharpe ratios are above 8.00 in simulation study and Sortino ratios are above 4.00 in backtesting, with very limited drawdowns, using 20 years of monthly data of U.S. equities (NASDAQ, NYSE and AMEX from 1999.1 to 2018.12) and 17 years of monthly data of China A-Share equities (Shanghai and Shenzhen Stock Exchange from 2002.1 to 2018.8).
Keywords: Active Portfolio Management, Strong Law of Large Numbers, Artificial Intelligence, Deep Learning, Backtesting
JEL Classification: C12
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
