Review of Traditional and Ensemble Clustering Algorithms for High Dimensional Data

Proceedings of 3rd International Conference on Internet of Things and Connected Technologies (ICIoTCT), 2018 held at Malaviya National Institute of Technology, Jaipur (India) on March 26-27, 2018

7 Pages Posted: 9 May 2018

See all articles by K Kalaiselvi

K Kalaiselvi

VELS Institute of Science, Technology & Advanced Studies (Formerly VELS University) - Department of Computer Science

Karthika D.

VELS Institute of Science, Technology & Advanced Studies (Formerly VELS University) - Department of Computer Science

Date Written: April 28, 2018

Abstract

High-dimensional data is explained by a huge quantity of features, introduces new issues to clustering. The so-named 'high dimensionality', creates initially to explain the common increase in time complexity of several computational issues, so the performances of the general clustering algorithms are unsuccessful. Accordingly, several works have been focused on introducing new techniques and clustering algorithms for handling higher dimensionality data. Regular to all clustering algorithms is the fact with the purpose of they need a various fundamental evaluation of similarity among data objects. However still, the existing clustering algorithms have some open research issues. In this review work, we provide a summary of the result of high-dimensional data space and their implications for various clustering algorithms. It also presents a detailed overview of many clustering algorithms with several types: subspace methods, modelbased clustering, density-based clustering methods; partition based clustering methods, etc., including a more detailed description of recent work of their own advantages and disadvantages for solving higher dimensionality data problem. The scope of the future work to extend the present clustering methods and algorithms are also discussed at end of the work.

Suggested Citation

Kalaiselvi, K and D., Karthika, Review of Traditional and Ensemble Clustering Algorithms for High Dimensional Data (April 28, 2018). Proceedings of 3rd International Conference on Internet of Things and Connected Technologies (ICIoTCT), 2018 held at Malaviya National Institute of Technology, Jaipur (India) on March 26-27, 2018. Available at SSRN: https://ssrn.com/abstract=3170321 or http://dx.doi.org/10.2139/ssrn.3170321

K Kalaiselvi (Contact Author)

VELS Institute of Science, Technology & Advanced Studies (Formerly VELS University) - Department of Computer Science ( email )

P.V, Vaithiyalingam Street
Pallavaram
Chennai, Tamil Nadu 600117
India

Karthika D.

VELS Institute of Science, Technology & Advanced Studies (Formerly VELS University) - Department of Computer Science ( email )

P.V, Vaithiyalingam Street
Pallavaram
Chennai, Tamil Nadu 600117
India

Register to save articles to
your library

Register

Paper statistics

Downloads
73
rank
316,185
Abstract Views
239
PlumX Metrics
!

Under construction: SSRN citations while be offline until July when we will launch a brand new and improved citations service, check here for more details.

For more information