Complex and Entangled Public Policy: Here Be Dragons

36 Pages Posted: 24 May 2018

See all articles by Abigail Devereaux

Abigail Devereaux

George Mason University, Department of Economics

Date Written: May 12, 2018

Abstract

The tools and concepts of the emerging field of complexity science—like agent-based modeling, network theory, and machine learning—can offer powerful insights to economists and crafters of public policy. Complexity science enables us to explicitly model relationships between individuals and institutions, asymmetric information and influence, the emergence of unplanned emergent social orders, and dynamically adaptive individuals. In the last few decades the tools of complexity science have been applied to the problem of public goods provision, correcting hypothesized behavioral biases, and raising the efficiency of policy implementation. These analyses often lack public choice perspectives, which may complicate and even obviate their findings when the designer becomes entangled with the complex structures in his models. Furthermore, there remains a good deal of work to be done to harmonize traditional public choice work with the tools and insights of complexity science. Uncharted waters must eventually be charted; we hope to begin in such a way that avoids the worst of the dragons.

Keywords: complexity economics, public choice, political economy, machine learning, agent-based modeling, OEE modeling, algorithmic design, algorithms

JEL Classification: H40, H50, P41, P48, P50

Suggested Citation

Devereaux, Abigail, Complex and Entangled Public Policy: Here Be Dragons (May 12, 2018). Available at SSRN: https://ssrn.com/abstract=3177464 or http://dx.doi.org/10.2139/ssrn.3177464

Abigail Devereaux (Contact Author)

George Mason University, Department of Economics ( email )

Fairfax, VA
United States

Register to save articles to
your library

Register

Paper statistics

Downloads
32
Abstract Views
173
PlumX Metrics