Deep Learning and the Cross-Section of Stock Returns: Neural Networks Combining Price and Fundamental Information

91 Pages Posted: 27 Jun 2018 Last revised: 21 Mar 2019

See all articles by Bo Zhou

Bo Zhou

Rutgers, The State University of New Jersey, Rutgers Business School

Date Written: March 3, 2019

Abstract

Traditional empirical finance research uses hand-engineering and trial-and-error to look for the anomalies in the cross-section of stock returns. In this paper, we take advantage of deep learning and utilize both the price and fundamental information to separate stocks’ winners from losers. For the first model, we used a 2-layer Long Short-Term Memory (LSTM) neural network with past 80 days’ return information as inputs to predict the next day’s return and find a before-trading-cost monthly return of 29.58% with a t-statistic of 26.81. The return of the stocks shows a strong short-term reversal pattern. For the second model, we design a novel 2-layer LSTM and Multi-layer Perceptron (MLP) hybrid neural network and utilize the monthly return and annual accounting data to predict the returns in the next month. We achieve a monthly return of 2.37% with a t-statistic of 8.97 before trading cost from 1993 through 2017. We use TAQ intraday data to explicitly estimate the trading cost and find that profits of the daily trading strategy in the first model turn negative. However, the trading strategy utilizing both the price and fundamental information in the second model keeps significantly positive with a monthly return of 1.57% and t-statistic of 6.03 after the trading cost. We show that the 2-layer LSTM and MLP hybrid model performs better than the MLP-only and the hand-engineering momentum and short-term reversal double sort trading strategy.

Keywords: Deep Learning, Machine Learning, Recurrent Neural Network(RNN), Long Short-Term Memory(LSTM), Deep Neural network (DNN), Multi-layer Perceptron (MLP), Momentum, Contrarian, Short-Term Reversal, Anomalies, Trading Strategy, Industry portfolio, trading cost, transaction costs, proportional effective s

JEL Classification: G10, G12

Suggested Citation

Zhou, Bo, Deep Learning and the Cross-Section of Stock Returns: Neural Networks Combining Price and Fundamental Information (March 3, 2019). Available at SSRN: https://ssrn.com/abstract=3179281 or http://dx.doi.org/10.2139/ssrn.3179281

Bo Zhou (Contact Author)

Rutgers, The State University of New Jersey, Rutgers Business School ( email )

Newark, NJ
United States

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
1,311
Abstract Views
3,901
rank
19,039
PlumX Metrics