Climate Change and U.S. Agriculture: Accounting for Multi-dimensional Slope Heterogeneity in Production Functions

45 Pages Posted: 25 May 2018 Last revised: 8 Jan 2020

See all articles by Michael P. Keane

Michael P. Keane

University of New South Wales

Timothy Neal

UNSW Australia Business School, School of Economics

Date Written: Jan 2, 2020

Abstract

We study potential impacts of future climate change on U.S. agricultural productivity using county-level yield and weather data from 1950 to 2015. To account for adaptation of production to different weather conditions, it is crucial to allow for both spacial and temporal variation in the production process mapping weather to crop yields. We present a new panel data estimation technique, called mean observation OLS (MO-OLS) that allows for spatial and temporal heterogeneity in all regression parameters (intercepts and slopes). Both forms of heterogeneity are important: We find strong evidence that production function parameters adapt to local climate, and also that sensitivity of yield to high temperature declined from 1950-89. We use our estimates to project corn yields to 2100 using 19 climate models and three greenhouse gas emission scenarios. We predict unmitigated climate change will greatly reduce yield. Our mean prediction (over climate models) is that adaptation alone can mitigate 36% of the damage, while emissions reductions consistent with the Paris targets would mitigate 76%.

JEL Classification: C23, C54, D24, Q15, Q51, Q54, Q55

Suggested Citation

Keane, Michael P. and Neal, Timothy, Climate Change and U.S. Agriculture: Accounting for Multi-dimensional Slope Heterogeneity in Production Functions (Jan 2, 2020). UNSW Business School Research Paper No. 2018-08a, Available at SSRN: https://ssrn.com/abstract=3180480 or http://dx.doi.org/10.2139/ssrn.3180480

Michael P. Keane (Contact Author)

University of New South Wales ( email )

Sydney, NSW
Australia

Timothy Neal

UNSW Australia Business School, School of Economics ( email )

High Street
Sydney, NSW 2052
Australia

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
247
Abstract Views
1,090
rank
151,007
PlumX Metrics