header

MultiFarm: A Benchmark for Multilingual Ontology Matching

9 Pages Posted: 7 Jul 2018 First Look: Accepted

See all articles by Christian Meilicke

Christian Meilicke

University of Mannheim

Raúl García-Castro

Universidad Politécnica de Madrid

Fred Freitas

Universidade Federal de Pernambuco (UFPE)

Willem Robert van Hage

VU University Amsterdam - Web & Media Group

Elena Montiel-Ponsoda

Universidad Politécnica de Madrid - Ontology Engineering Group

Ryan Ribeiro Azevedo

Universidade Federal de Pernambuco (UFPE)

Heiner Stuckenschmidt

University of Mannheim - Data and Web Science Group

Ondřej Zamazal

University of Economics, Prague - Department of Information and Knowledge Engineering

Vojtech Svatek

University of Economics, Prague - Department of Information and Knowledge Engineering

Andrei Tamilin

Fondazione Bruno Kessler

Cassia Trojahn

Institut National de Recherche en Informatique et Automatique (INRIA) - Grenoble - Rhône-Alpes

Shenghui Wang

VU University Amsterdam; OCLC - Online Computer Library Center, Incorporated

Abstract

In this paper we present the MultiFarm dataset, which has been designed as a benchmark for multilingual ontology matching. The MultiFarm dataset is composed of a set of ontologies translated in different languages and the corresponding alignments between these ontologies. It is based on the OntoFarm dataset, which has been used successfully for several years in the Ontology Alignment Evaluation Initiative (OAEI). By translating the ontologies of the OntoFarm dataset into eight different languages – Chinese, Czech, Dutch, French, German, Portuguese, Russian, and Spanish - we created a comprehensive set of realistic test cases. Based on these test cases, it is possible to evaluate and compare the performance of matching approaches with a special focus on multilingualism.

Keywords: Ontology Matching, Benchmarking, Multilingualism, Data Integration

Suggested Citation

Meilicke, Christian and García-Castro, Raúl and Freitas, Fred and van Hage, Willem Robert and Montiel-Ponsoda, Elena and Azevedo, Ryan Ribeiro and Stuckenschmidt, Heiner and Zamazal, Ondřej and Svatek, Vojtech and Tamilin, Andrei and Trojahn, Cassia and Wang, Shenghui, MultiFarm: A Benchmark for Multilingual Ontology Matching (April 11, 2012). Journal of Web Semantics First Look 15_3_5, Available at SSRN: https://ssrn.com/abstract=3198970 or http://dx.doi.org/10.2139/ssrn.3198970

Christian Meilicke (Contact Author)

University of Mannheim ( email )

Universitaetsbibliothek Mannheim
Zeitschriftenabteilung
Mannheim, 68131
Germany

Raúl García-Castro

Universidad Politécnica de Madrid

Ciudad Universitaria
Madrid, MA Madrid 28040
United States

Fred Freitas

Universidade Federal de Pernambuco (UFPE)

Cidade Universitária
Cidade Universitária, Pernambuco 50670-901
Brazil

Willem Robert Van Hage

VU University Amsterdam - Web & Media Group ( email )

De Boelelaan 1081a
Amsterdam, 1081
Netherlands

Elena Montiel-Ponsoda

Universidad Politécnica de Madrid - Ontology Engineering Group ( email )

Madrid
Spain

Ryan Ribeiro Azevedo

Universidade Federal de Pernambuco (UFPE)

Cidade Universitária
Cidade Universitária, Pernambuco 50670-901
Brazil

Heiner Stuckenschmidt

University of Mannheim - Data and Web Science Group ( email )

L 5, 2 - 2. OG
68161 Mannheim
Germany

Ondřej Zamazal

University of Economics, Prague - Department of Information and Knowledge Engineering ( email )

Nam. W. Churchilla 4
Praha 3
Czech Republic

Vojtech Svatek

University of Economics, Prague - Department of Information and Knowledge Engineering ( email )

Nam. W. Churchilla 4
Praha 3
Czech Republic

Andrei Tamilin

Fondazione Bruno Kessler

Via Sommarive 18
Povo
Trento, 38123
Italy

Cassia Trojahn

Institut National de Recherche en Informatique et Automatique (INRIA) - Grenoble - Rhône-Alpes

655 avenue de l’Europe
38330 Montbonnot
France

Shenghui Wang

VU University Amsterdam ( email )

De Boelelaan 1105
Amsterdam, ND North Holland 1081 HV
Netherlands

OCLC - Online Computer Library Center, Incorporated ( email )

Leiden
Netherlands

Here is the Coronavirus
related research on SSRN

Paper statistics

Abstract Views
325
Downloads
4