Charging an Electric Vehicle Sharing Fleet

Manufacturing and Service Operations Management

41 Pages Posted: 15 Aug 2018 Last revised: 4 Mar 2020

See all articles by Long He

Long He

George Washington University; National University of Singapore

Guangrui Ma

Tianjin University - College of Management and Economics

Wei Qi

McGill University - Desautels Faculty of Management

Xin Wang

University of Wisconsin-Madison

Date Written: September 27, 2019


Problem definition: Many cities worldwide are embracing electric vehicle (EV) sharing as a flexible and sustainable means of urban transit. However, it remains challenging for the operators to charge the fleet due to limited or costly access to charging facilities. In this paper, we focus on answering the core question---how to charge the fleet to make EV sharing viable and profitable.

Academic/Practical relevance: Our work is motivated by the setback that struck San Diego, California, where car2go ceased its EV sharing operations. We integrate charging infrastructure planning and vehicle repositioning operations that were often considered separately. More interestingly, our modeling emphasizes the operator-controlled charging operations and customers' EV picking behavior, which are both central to EV sharing but were largely overlooked.

Methodology: Supported by the real data of car2go, we develop a queueing network model that characterizes how customers endogenously pick EVs based on energy levels, and how the operator implements a charging up-to policy. The integrated queueing-location model leads to a nonlinear optimization program. We then propose both lower- and upper-bound formulations as mixed-integer second order cone programs, which are computationally tractable and result in a small optimality gap when the fleet size is adequate.

Results: We learn lessons from the setback of car2go in San Diego. We find that the viability of EV sharing can be enhanced by concentrating limited charger resources at selected locations. Charging EVs either in a proactive fashion or at the 40% recharge threshold (rather than car2go's policy of charging EVs only when their energy level drops below 20%) can boost the profit by more than 15%. Moreover, sufficient charger availability is crucial when collaborating with a public charger network. Increasing the charging power relieves the charger resource constraint, whereas extending per-charge range or adopting unmanned repositioning improves profitability. Finally, we discuss how EV sharing operations depend on the urban spatial structure, compared with conventional car sharing.

Managerial implications: We demonstrate a data-verified and high-granularity modeling approach. Both the high-level planning guidelines and operational policies can be useful for practitioners. We also highlight the value of jointly managing demand fulfillment and EV charging.

Keywords: smart city operations, electric vehicles, car sharing, charging infrastructure

Suggested Citation

He, Long and Ma, Guangrui and Qi, Wei and Wang, Xin, Charging an Electric Vehicle Sharing Fleet (September 27, 2019). Manufacturing and Service Operations Management, Available at SSRN: or

Long He

George Washington University ( email )

2121 I Street NW
Washington, DC 20052
United States

National University of Singapore ( email )

15 Kent Ridge Drive
Mochtar Riady Building, BIZ1 #8-73
Singapore, 119245

Guangrui Ma

Tianjin University - College of Management and Economics ( email )

NO.92 Weijin Road
Nankai District
Tianjin, 300072

Wei Qi (Contact Author)

McGill University - Desautels Faculty of Management ( email )

1001 Sherbrooke Street West
Montreal, Quebec H3A 1G5

Xin Wang

University of Wisconsin-Madison ( email )

Madison, WI Wisconsin 53706
United States
2178982195 (Phone)

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Abstract Views
PlumX Metrics