Dissecting Characteristics Nonparametrically
107 Pages Posted: 16 Oct 2018
There are 6 versions of this paper
Dissecting Characteristics Nonparametrically
Dissecting Characteristics Nonparametrically
Dissecting Characteristics Nonparametrically
Dissecting Characteristics Nonparametrically
Dissecting Characteristics Nonparametrically
Dissecting Characteristics Nonparametrically
Date Written: August 09, 2018
Abstract
We propose a nonparametric method to study which characteristics provide incremental information for the cross section of expected returns. We use the adaptive group LASSO to select characteristics and to estimate how they affect expected returns nonparametrically. Our method can handle a large number of characteristics, allows for a flexible functional form, and our implementation is insensitive to outliers. Many of the previously identified return predictors do not provide incremental information for expected returns, and nonlinearities are important. We study the properties of our method in an extensive simulation study and out-of-sample prediction exercise and find large improvements both in model selection and prediction compared to alternative selection methods. Our proposed method has higher out-of-sample Sharpe ratios and explanatory power compared to linear panel regressions.
Keywords: cross section of returns, anomalies, expected returns, model selection
JEL Classification: C140, C520, C580, G120
Suggested Citation: Suggested Citation