A New Perspective on Breast Cancer Diagnostic Guidelines to Reduce Overdiagnosis

48 Pages Posted: 13 Nov 2018

See all articles by Sait Tunc

Sait Tunc

University of Chicago - Booth School of Business

Oguzhan Alagoz

University of Wisconsin - Madison - Department of Industrial and Systems Engineering

Elizabeth Burnside

University of Wisconsin - Madison - School of Medicine and Public Health

Date Written: October 21, 2018

Abstract

Overdiagnosis of breast cancer, defined as diagnosing a cancer that would otherwise not cause symptoms or death in a patient’s lifetime, costs US health care system over $1.2 billion annually. Overdiagnosis rates, estimated to be around 10% − 40%, may be reduced if indolent breast cancer subtypes can be identified and followed with noninvasive imaging rather than biopsy. However, there are no validated guidelines for radiologists to decide when to choose imaging options recognizing cancer subtypes. The aim of this study is to optimize breast cancer diagnostic decisions based on cancer subtypes using a large-scale finite-horizon Markov decision process (MDP) model with 4.6 million states to help reduce overdiagnosis. We develop and prove the optimality of a divide-and-conquer algorithm that relies on tight upper bounds on the optimal decision thresholds to find an exact optimal solution. We project the high-dimensional MDP onto two lower-dimensional MDPs and obtain feasible upper bounds on the optimal decision thresholds. We use real data from two private mammography databases and demonstrate our model performance through a previously validated simulation model that has been used by the policy makers to set the national screening guidelines in the US. We find that a decision-analytical framework optimizing diagnostic decisions while accounting for breast cancer subtypes has a strong potential to improve the quality of life and alleviate the immense costs of overdiagnosis. Our model leads to a 20% reduction in overdiagnosis on the screening population, which translates into an annual savings of approximately $300 million for the US health care system.

Keywords: Markov Decision Process, Large-Scale Dynamic Programming, Dimension Reduction, Breast Cancer, Overdiagnosis, Mammography, Medical Decision Making, Healthcare Applications

Suggested Citation

Tunc, Sait and Alagoz, Oguzhan and Burnside, Elizabeth, A New Perspective on Breast Cancer Diagnostic Guidelines to Reduce Overdiagnosis (October 21, 2018). Available at SSRN: https://ssrn.com/abstract=3270399 or http://dx.doi.org/10.2139/ssrn.3270399

Sait Tunc (Contact Author)

University of Chicago - Booth School of Business ( email )

5807 South Woodlawn Avenue
Chicago, IL 60637
United States

Oguzhan Alagoz

University of Wisconsin - Madison - Department of Industrial and Systems Engineering ( email )

360 Mechanical Engineering
1513 University Avenue
Madison, WI 53706-1572
United States

Elizabeth Burnside

University of Wisconsin - Madison - School of Medicine and Public Health ( email )

Madison, WI 53711
United States

Register to save articles to
your library

Register

Paper statistics

Downloads
54
Abstract Views
319
rank
378,359
PlumX Metrics