Predicting Human Discretion to Adjust Algorithmic Prescription: A Large-Scale Field Experiment in Warehouse Operations

41 Pages Posted: 12 Apr 2019 Last revised: 14 Jul 2020

See all articles by Jiankun Sun

Jiankun Sun

Imperial College London - Imperial College Business School

Dennis Zhang

Washington University in St. Louis - John M. Olin Business School

Haoyuan Hu

Alibaba Group

Jan A. Van Mieghem

Northwestern University - Kellogg School of Management

Date Written: April 26, 2020

Abstract

Conventional optimization algorithms that prescribe order packing instructions (which items to pack in which sequence in which box) focus on box volume utilization yet tend to overlook human behavioral deviations. We observe that packing workers at the warehouses of Alibaba Group deviate from algorithmic prescriptions for 5.8% of packages, and these deviations increase packing time and reduce operational efficiency. We posit two mechanisms and demonstrate that they result in two types of deviations: (1) information deviations stem from workers having more information and in turn better solutions than the algorithm; and (2) complexity deviations result from workers' aversion, inability or discretion to precisely implement algorithmic prescriptions.

We propose a new "human-centric bin packing algorithm" that anticipates and incorporates human deviations to reduce deviations and improve performance. It predicts when workers are more likely to switch to larger boxes using machine learning techniques and then pro-actively adjusts the algorithmic prescriptions of those ``targeted packages.'' We conducted a large-scale randomized field experiment with the Alibaba Group. Orders were randomly assigned to either the new algorithm (treatment group) or Alibaba's original algorithm (control group). Our field experiment results show that our new algorithm lowers the rate of switching to larger boxes from 29.5% to 23.8% for targeted packages and reduces the average packing time of targeted packages by 4.5%. This idea of incorporating human deviations to improve optimization algorithms could also be generalized to other processes in logistics and operations.

Keywords: Warehouse Operations, Behavioral Operations, Field Experiment, Retailing

Suggested Citation

Sun, Jiankun and Zhang, Dennis and Hu, Haoyuan and Van Mieghem, Jan Albert, Predicting Human Discretion to Adjust Algorithmic Prescription: A Large-Scale Field Experiment in Warehouse Operations (April 26, 2020). Available at SSRN: https://ssrn.com/abstract=3355114 or http://dx.doi.org/10.2139/ssrn.3355114

Jiankun Sun (Contact Author)

Imperial College London - Imperial College Business School ( email )

Imperial College London
South Kensington Campus
London, SW7 2AZ
United Kingdom

Dennis Zhang

Washington University in St. Louis - John M. Olin Business School ( email )

One Brookings Drive
Campus Box 1133
St. Louis, MO 63130-4899
United States

Haoyuan Hu

Alibaba Group ( email )

Jan Albert Van Mieghem

Northwestern University - Kellogg School of Management ( email )

2001 Sheridan Road
Evanston, IL 60208
United States

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
932
Abstract Views
5,481
Rank
49,046
PlumX Metrics