Stock Market Prediction Using Data Mining Techniques

5 Pages Posted: 24 Apr 2019

See all articles by Archana Gupta

Archana Gupta

University of Mumbai - Department of Computer Engineering

Pranay Bhatia

University of Mumbai, K. J. Somaiya College of Engineering (K.J.S.C.E.), Department of Computer Engineering, Students

Kashyap Dave

University of Mumbai, K. J. Somaiya College of Engineering (K.J.S.C.E.), Department of Computer Engineering, Students

Pritesh Jain

University of Mumbai, K. J. Somaiya College of Engineering (K.J.S.C.E.), Department of Computer Engineering, Students

Date Written: April 8, 2019

Abstract

A stock market is the aggregation of buyers and sellers of stocks (shares), which represent ownership claims on businesses which may include securities listed on a public stock exchange as well as those traded privately. We have seen through the years that people have incurred high losses which have led to devastations of lives and hence a need for prediction system arises which can be trusted and consistent throughout the life cycle. Also predicting stock prices is an important task of financial time series forecasting, which is of primary interest to stock investors, stock traders and applied researchers. Precisely predicting stocks is essential for investors to gain enormous profits. However the volatility of the market makes this kind of prediction is highly difficult. We show that Data Mining and Machine Learning could be used to guide an investor’s decisions. The main aim is to build a model with the help of Data Mining techniques such as Knn which can be used for classification and regression combined with Machine Learning techniques like Genetic algorithm, SVR along with Sentiment Analysis based social media text, which forecast’s stock price for companies. The system if correctly implemented will help investors and new users to kick start the investment process and can provide undue benefits. The system can be enhanced by considering the input parameters and the data considered overtime.

Keywords: Stock market, financial time series, Prediction, Data mining, Machine learning, Knn, Genetic Algorithm, Sentimental analysis

Suggested Citation

Gupta, Archana and Bhatia, Pranay and Dave, Kashyap and Jain, Pritesh, Stock Market Prediction Using Data Mining Techniques (April 8, 2019). 2nd International Conference on Advances in Science & Technology (ICAST) 2019 on 8th, 9th April 2019 by K J Somaiya Institute of Engineering & Information Technology, Mumbai, India. Available at SSRN: https://ssrn.com/abstract=3370789 or http://dx.doi.org/10.2139/ssrn.3370789

Archana Gupta (Contact Author)

University of Mumbai - Department of Computer Engineering ( email )

India

Pranay Bhatia

University of Mumbai, K. J. Somaiya College of Engineering (K.J.S.C.E.), Department of Computer Engineering, Students ( email )

Mumbai
India

Kashyap Dave

University of Mumbai, K. J. Somaiya College of Engineering (K.J.S.C.E.), Department of Computer Engineering, Students ( email )

Mumbai
India

Pritesh Jain

University of Mumbai, K. J. Somaiya College of Engineering (K.J.S.C.E.), Department of Computer Engineering, Students ( email )

Mumbai
India

Here is the Coronavirus
related research on SSRN

Paper statistics

Downloads
575
Abstract Views
1,908
rank
49,311
PlumX Metrics